cho các số hữu tỉ a/b và c/d với mẫu dương biết 1/b < c/d. Chứng tỏ rằng a/b < a+c/b+d < c/d
Cho các số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) với mẫu dương, trong đó \(\dfrac{a}{b}< \dfrac{c}{d}\) . Chứng minh rằng :
\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
`a/b<(a+c)/(b+d)`
`<=>a(b+d)<b(a+c)`
`<=>ab+ad<ad<bc`
`<=>ad<bc`
`<=>a/b<c/d`(theo giả thiết)
`(a+c)/(b+d)<c/d`
`<=>d(a+c)<c(b+d)`
`<=>ad+cd<bc+dc`
`<=>ad<bc`
`<=>a/b<c/d`(theo giả thiết)`
`=>a/b<(a+c)/(b+d)<c/d`
cho các số hữu tỉ a/b và c/d với mẫu dương biết a/b < c/d. Chứng minh rằng a/b < a+c/b+d< c/d
Ta có:
\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow\left\{{}\begin{matrix}ad+ab< bc+ab\\ad+cd< bc+cd\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+c\right)< c\left(b+d\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{a+c}{b+d}< \dfrac{c}{d}\end{matrix}\right.\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{a}{d}\)(đpcm)
Chúc bạn học tốt!!!
1/ cho các số hữu tỉ a/b và c/d với mẫu dương trong đó a/b <c/d chứng minh rằng
a/ad<bc
b/a/b<a+c/b+c<c/d
cho các số hữu tỉ a/b và c/d với mẫu dương , trong đó a/b < c/d. chứng minh rằng:
a) ad< bc
b) a/b < a+c/ b+d < c/d
a)\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.bd< \frac{c}{d}.bd\Rightarrow ad< cb\)(đpcm)
b)Ta có:
ad<cd=>ab+ad<ab+cd
=>a(b+d)<b(b+d)
=>\(\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)
=>\(\frac{a}{b}< \frac{a+c}{b+d}\)(1)
ad<bc=>ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>\(\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)
=>\(\frac{a+c}{b+d}< \frac{c}{d}\)(2)
Từ (1) và (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)(đpcm)
Cho các số hữu tỉ \(\dfrac{a}{b}\)và\(\dfrac{c}{d}\) với mẫu dương, trong đó \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\). Chứng minh rằng:
A) ad<bc
B) \(\dfrac{a}{b}\)<\(\dfrac{a+c}{b+d}\)< \(\dfrac{c}{d}\)
a) \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
b) Tham khảo:https://olm.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+h%E1%BB%AFu+t%E1%BB%89+a/b+v%C3%A0+c/d+v%E1%BB%9Bi+m%E1%BA%ABu+d%C6%B0%C6%A1ng+,+trong+%C4%91%C3%B3+a/b+%3Cc/d+.+c/m+r%E1%BA%B1ng+a)+a.d+%3Cb.c+b)+a/b+%3C+(a+c)/(b+d)%3Cc/d+&id=174343
a) Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{c}{d}\\b,d>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{b}.bd< \dfrac{c}{d}.bd\Rightarrow ad< bc\)
b) Ta có: \(ad< bc\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)(do \(b,d>0\))
\(bc>ad\Rightarrow bc+cd>ad+cd\)
\(\Rightarrow c\left(b+d\right)>d\left(a+c\right)\Rightarrow\dfrac{c}{d}>\dfrac{a+c}{b+d}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Cho a;b;c;d là số hữu tỉ dương và a/b=c/d
Chứng tỏ rằng :
a/a+b = c/c+d
a/a-b = c/c-d
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
cho các số hữu tỉ a/b và c/d với mẫu dương , trong đó a/b <c/d . c/m rằng
a) a.d <b.c
b) a/b < (a+c)/(b+d)<c/d
A) Cho các số hữu tỉ x= a/b; y = c/d; z= a+c/b+d với a,b,c,d \(\in\) Z và b>0, d>0 và x < y
Hãy chứng tỏ rằng x < z< y
B) Hãy viết ba số hữu tỉ khác tử số và khác mẫu số sao cho chúng lớn hơn -1/5 và nhỏ hơn -1/6
Giúp mình nha!
Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!
Do a/b < c/d và b>0 ; d>0 suy ra ad< bc ( 1)
Cộng thêm ad vào 2 vế của ( 1) ta được:
ad + ad < bc + ad
=> a( b+d) < b ( a+ c )
=> a/b < a+c/b+c ( 2)
Cộng thêm cd vào 2 vế của ( 2) ta được:
ad + cd < bc + cd
=> ( a+ c) b < ( b+ d ) c
=> a+c/b+d < c/d ( 3)
Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y
b) Ta có:
-1/5 < -1/6 => -1/5 < -2/11 < -1/6
-1/5 < -2/11 => -1/5 < - 3/16 < -2/11
-1/5 < -3/16 => -1/5 < -4/21 < -3/16
-1/5 < -4/21 => -1/5 < -4/21 < -3/16
Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6
Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3
1) a) Cho a, b, thuộc Z và b khác 0. Chứng tỏ rằng: a / -b = -a / b ; -a / -b = a/b
b) So sánh các số hữu tỉ sau : -2 / 5 và 9 / -20 ; 10 / 7 và -40 / -28
2) Cho số hữu tỉ a / b với b > 0. Chứng tỏ rằng :
a) Nếu a / b > 1 thì a > b và ngược lại nếu a > b thì a / b > 1
b) Nếu a / b < 1 thì a < b và ngược lại nếu a < b thì a / b < 1
3) a) Cho 2 số hữu tỉ a / b và c / d với b > 0, d > 0. Chứng tỏ rằng nếu a / b < c / d thì: a / b < a + c / b + d < c / d
b) Viết 4 số hữu tỉ xen giữa 2 số hữu tỉ -1 / 2 và -1 / 3