Thu gon bieu thuc:
E=|x-3|+|x2+1|-x (x-1)
thu gon bieu thuc
(x+1)^3-x(x^2+3)
thu gon bieu thuc sau (2x-1)^3-(3x^2-1)(x-2)-(x+3)^3
Ta có: \(\left(2x-1\right)^3-\left(3x^2-1\right)\left(x-2\right)+\left(x+3\right)^3\)
\(=8x^3-12x^2+6x-1-\left(3x^3-6x^2-x+2\right)+x^3+9x^2+27x+27\)
\(=9x^3-3x^2+33x+26-3x^3+6x^2+x-2\)
\(=6x^3+3x^2+34x+24\)
thu gon bieu thuc |2x+3|-x=1
giúp mk gấp nha
thanks
\(\left|2x+3\right|-x=1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=x+1\\2x+3=-x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-x=1-3\\2x+x=-1-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\3x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}\)
Cho bieu thuc: ( x-1/ x+1 - x-1/x+1) : 2x / 3x - 3
a, Tim dieu kien xac dinh cua bieu thuc P
b, Rut gon bieu thuc P
c, Tim x thuoc z de P nhan gia tri nguyen.
Đề bài sai rồi bạn ! Mình sửa :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
b) \(P=\left(\frac{x-1}{x+1}-\frac{x+1}{x-1}\right):\frac{2x}{3x-3}\)
\(\Leftrightarrow P=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{x^2-2x+1-x^2-2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-6}{x+1}\)
c) Để P nhận giá trị nguyên
\(\Leftrightarrow\frac{-6}{x+1}\inℤ\)
\(\Leftrightarrow x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\)
Ta loại các giá trị ktm
\(\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
cho bieu thuc A = /x-1/ + 3x-7
a. rut gon bieu thuc
b. tinh A khi x=3;x=-5
Giai phuong trinh giup minh
Cho bieu thuc B=(1/x-3-1/x^2-9)*(1/x+2+1)
Tim ĐKXĐ cua B
Rut gon B
TIm x nguyen de bieu thuc B co gia tri nguyen
a: ĐKXĐ: \(x\notin\left\{3;-3;-2\right\}\)
b: \(B=\dfrac{x+3-1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+2+1}{x+2}\)
\(=\dfrac{x+2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+2}=\dfrac{1}{x-3}\)
c: Để B nguyên thì \(x-3\in\left\{1;-1\right\}\)
hay \(x\in\left\{4;2\right\}\)
rut gon bieu thuc tren (x-1)^3-(x-1).(x^2+x+1)
Lời giải:
$(x-1)^3-(x-1)(x^2+x+1)=(x-1)[(x-1)^2-(x^2+x+1)]=(x-1)(x^2-2x+1-x^2-x-1)=(x-1)(-3x)=-3x(x-1)$
cho bieu thuc A=(x-√x/√-1+1):(x+√x/√x+1) (x≥0;x≠1)
a. tim x de bieu thuc A co nghia ? rut gon A?
b. tinh gia tri cua bieu thuc A tai x =7+4√3
lm giup mik nha
căn bậc hai không có số âm
\(\sqrt{-1}\) đó
a) ĐK : x ≥ 0 ; x ≠ 1
A=\(\frac{x-\sqrt{x}}{\sqrt{x}-1}:\frac{x+\sqrt{x}}{\sqrt{x}+1}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}:\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
=\(\sqrt{x}:\sqrt{x}\)
=1
Vậy A=1 với x ≥ 0 ; x ≠ 1
b) Vì A=1 nên không thể thay x
cho bieu thuc p=(x+1)(x+√x)/√x-x-√x, voi x>0
a/ rut gon bieu thuc
b/ tim gia tri cua x de gia tri cua bieu thuc p bang 2