Cho tam giác ABC vuông tại A,đường cao AH. E,F là hình chiếu của H lên AB,AC
a,CM AE.AB=AF.AC=BH.HC2=AH2
b,CM tam giác AEF đồng dạng tam giác ACB
tam giác abc vuông tại a,ah vuông góc bc,e,f lần lượt là hình chiếu của h trên ab,ac
a)cm tam giác abc đồng dạng tam giác hba và ab2=bc.bh
b)cm ah2=ab.ab và ae.ab=af.ac
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: ΔAHB vuông tại H có HE là đường cao
nên AH^2=AE*AB
ΔAHC vuông tại H có HF là đường cao
nên AH^2=AF*AC
=>AE*AB=AF*AC
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm . Vẽ đường cao AH .
a. Tính độ dài đoạn thẳng BC AH.
b. Từ H vẽ HE vuông góc với AB tại E và HF vuông góc với AC tại F . Tính độ dài doạn thẳng È.
c. Chứng minh AE.AB=AF.AC rồi từ đó suy ra tam giác AEF đồng dạng với tam giác ACB.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh: AE.AB = AF.AC và \(\widehat{AEF}=\widehat{ABC}\)
b) Đường trung tuyến AI của tam giác ABC cắt EF tại K. Chứng minh rằng \(cos^2B.sinB=\dfrac{KF}{BC}\)
.Ta có :
AH⊥BC,HE⊥AB→\(\widehat{AEH}=\widehat{AHB}\)
=> \(\Delta AEH\approx\Delta AHB\)(g.g)
=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)
=>AH\(^2\)=AE.AB
Lam tuong tu ta dc AH\(^2\)=AF.AC
=> AE.AB=AF.AC
a: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nen AF*AC=AH^2
=>AE*AB=AF*AC
=>AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
Cho Tam giác ABC vuông tại A, đường cao AH,gọi E và F theo thứ tự là hình chiếu vuông góc của H lên AB, AC. a, chứng minh AE.AB=AF.AC B,tam giác AFE đồng dạng tam giác ABC C, chứng minh AH^3= AE.AF.BC D, BC cố định, tìm vị trí của A để EF có độ dài lớn nhất
a) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AE.AB=AH^2\)
tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng
\(\Rightarrow AF.AC=AH^2=AE.AB\)
b) \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{AB}\\\angle BACchung\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\)
c) Ta có: \(AH^4=AH^2.AH^2=AE.AB.AF.AC\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH^4=AE.AF.BC.AH\Rightarrow AH^3=AE.AF.BC\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
b) Ta có: \(AE\cdot AB=AF\cdot AC\)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAFE vuông tại A và ΔABC vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
Do đó: ΔAFE\(\sim\)ΔABC(c-g-c)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
AE⋅AB=AH2AE⋅AB=AH2(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
AF⋅AC=AH2AF⋅AC=AH2(2)
Từ (1) và (2) suy ra AE⋅AB=AF⋅ACAE⋅AB=AF⋅AC
b) Ta có: AE⋅AB=AF⋅ACAE⋅AB=AF⋅AC
nên AEAC=AFABAEAC=AFAB(cmt)
Do đó: ΔAFE∼∼ΔABC(c-g-c)
1/ Cho ABC vuông tại A, đường cao AH. Gọi E, F Lần lượt là hình chiếu của H lên AB, AC. a. Chứng minh: AEF đồng dạng AHB. b. Chứng minh : EF2 = HB.HC c. Chứng minh : AE.AB = AF.AC d. Cho biết HB=1cm, HC=4 cm. Tính diện tích tứ giác AEHF.
Cho \(\Delta ABC\) vuông tại A, đường cao AH. Gọi I,K lần lượt là hình chiếu của H trên cạnh AB, AC
a) Cm: AI.AB=AK.AC và 2 tam giác AIK, ACB đồng dạng
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:
\(AI\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:
\(AK\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
hay \(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
Xét ΔAIK vuông tại A và ΔACB vuông tại A có
\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)(cmt)
Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)
Cho tam giác ABC nhọn vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và F. BF cắt CE tại H. a) cm AH vuông góc với BC; b) cm AE.AB = AF.AC c) Cm góc AEF = góc ACB ; d) Cm 4 điểm A, E, H, F cùng thuộc 1 đường tròn
a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>CE\(\perp\)AB
Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
=>BF\(\perp\)AC
XétΔABC có
CE,BF là đường cao
CE cắt BF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có
\(\widehat{A}\) chung
Do đó: ΔAEC ~ΔAFB
=>\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\)
=>\(AE\cdot AB=AC\cdot AF;\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
c: Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF~ΔACB
=>\(\widehat{AEF}=\widehat{ACB}\)
d: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
=>AEHF là tứ giác nội tiếp
=>A,E,H,F cùng thuộc một đường tròn
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF