Bài 4: Một số hệ thức về cạnh và góc trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Hiền

Cho Tam giác ABC vuông tại A, đường cao AH,gọi E và F theo thứ tự là hình chiếu vuông góc của H lên AB, AC. a, chứng minh AE.AB=AF.AC B,tam giác AFE đồng dạng tam giác ABC C, chứng minh AH^3= AE.AF.BC D, BC cố định, tìm vị trí của A để EF có độ dài lớn nhất

An Thy
31 tháng 7 2021 lúc 10:57

a) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AE.AB=AH^2\)

tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng

\(\Rightarrow AF.AC=AH^2=AE.AB\)

b) \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{AB}\\\angle BACchung\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\)

c) Ta có: \(AH^4=AH^2.AH^2=AE.AB.AF.AC\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH^4=AE.AF.BC.AH\Rightarrow AH^3=AE.AF.BC\)

 

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 13:36

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

b) Ta có: \(AE\cdot AB=AF\cdot AC\)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAFE vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

Do đó: ΔAFE\(\sim\)ΔABC(c-g-c)

nguyenminhnghia
19 tháng 11 2021 lúc 9:51

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

AE⋅AB=AH2AE⋅AB=AH2(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

AF⋅AC=AH2AF⋅AC=AH2(2)

Từ (1) và (2) suy ra AE⋅AB=AF⋅ACAE⋅AB=AF⋅AC

b) Ta có: AE⋅AB=AF⋅ACAE⋅AB=AF⋅AC
nên AEAC=AFABAEAC=AFAB(cmt)

Do đó: ΔAFE∼∼ΔABC(c-g-c)


Các câu hỏi tương tự
nguyễn hà phương
Xem chi tiết
nguyễn hương mây
Xem chi tiết
Oanh Nguyễn Hoàng
Xem chi tiết
đào minh tuấn
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Phạm Hải Hiếu
Xem chi tiết
Nguyễn Xuân Mai
Xem chi tiết
Hạt dẻ cười
Xem chi tiết
Kresol♪
Xem chi tiết