cm biểu thức x^4+x^2+2 luôn có gt dương với mọi gt của biến
Cho bt: M=3x-2
a) Tìm gt của biến x để M=0
b) Cho bt: A=( x^2 - 3x ) - (3x - 9 ) +5
Cm A luôn dương với mọi gt của biến x
\(a,M=3x-2=0\\ \Rightarrow3x=2\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(b,A=\left(x^2-3x\right)-\left(3x-9\right)+5\\ =x^2-3x-3x+9+5\\ =x^2-6x+14\\ =\left(x^2-6x+9\right)+5\\ =\left(x-3\right)^2+5\ge5>0\forall x\)
Suy ra A luôn dương với mọi biến của `x`
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự
chứng minh biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến x:E=x^2+2x+15
\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)
E=(x2+2x+1)+14=(x+1)2+14
ta có (x+1)2 >=0 với mọi x
suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x
Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) 1/4 x -x² +2 b) 3x + 2x² +1 c) 9x² -12x + 5 d) ( x+2)² +(x-2)²
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
Chứng minh rằng:
a/Biểu thức:A=x2+x+1 luôn dương với mọi giá trị của x
b/Biểu thức:B= x2-x+1 luôn dương với mọi giá trị của x
c/x2+xy+y2+1>0 với mọi x;y
d/x2+4y2+z2-2x-6y+8z+15>0 với mọi x;y;z
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)
Chứng minh rằng các biểu thức sau luôn dương với mọi x
a) a4 + b2 + 2 - 4ab (>= 0)
b) (x-1)(x-3)(x-4)(x-6)+9 (>=0)
b
= (x2-7x+6)(x2-7x+12)+9
đặt x2-7x+9=a ta đc
(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)
Chứng minh rằng các biểu thức sau luôn dương với mọi x
a) a4 + b2 + 2 - 4ab (>= 0)
b) (x-1)(x-3)(x-4)(x-6)+9 (>=0)
= (x2-7x+6)(x2-7x+12)+9
đặt x2-7x+9=a ta đc
(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)
Chứng minh rằng các biểu thức sau luôn dương với mọi x
a) a4 + b2 + 2 - 4ab (>= 0)
b) (x-1)(x-3)(x-4)(x-6)+9 (>=0)
= (x2-7x+6)(x2-7x+12)+9
đặt x2-7x+9=a ta đc
(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
CMR: các bt sau luôn có gt dương vs mọi gt của biến
a, 9x2 - 6x + 2
b, x2 + x + 1
c, 2x2 + 2x + 1
CMR: bt sau luôn âm vs mọi gt của biến
-9x2 + 12x - 15
câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x
câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x
4x^2-x+1/2 Cm biểu thức sau luôn có giá trị dương với mọi x
\(4x^2-x+\frac{1}{2}\)
\(=\left(2x\right)^2-x.2.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\)
\(=\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}.Với\forall x\in R\)
\(\RightarrowĐPCM\)
4x^2-x +1/2
= (2x -1/2)^2 +1/4 > 1/4 với mọi x
vậy 4x^2 -x +1/2 luôn có giá trị dương với mọi x