Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Minh Phương
Xem chi tiết
Vô danh
25 tháng 3 2022 lúc 21:42

\(a,M=3x-2=0\\ \Rightarrow3x=2\\ \Leftrightarrow x=\dfrac{3}{2}\)

\(b,A=\left(x^2-3x\right)-\left(3x-9\right)+5\\ =x^2-3x-3x+9+5\\ =x^2-6x+14\\ =\left(x^2-6x+9\right)+5\\ =\left(x-3\right)^2+5\ge5>0\forall x\)

Suy ra A luôn dương với mọi biến của `x`

Ahwi
Xem chi tiết
Ahwi
1 tháng 3 2018 lúc 13:45

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

mê zai đẹp
1 tháng 3 2018 lúc 13:46

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

alibaba nguyễn
1 tháng 3 2018 lúc 13:47

1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)

\(=-11-\left(3x-2\right)^2\le-11< 0\)

Câu b và câu 2 tương tự

Thúy An
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 9 2021 lúc 19:24

\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)

inuyasha
23 tháng 9 2021 lúc 19:24

E=(x2+2x+1)+14=(x+1)2+14

ta có (x+1)2 >=0 với mọi x

suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x

Thuytiev
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 11:23

a: Sửa đề: 1/4x+x^2+2

x^2+1/4x+2

=x^2+2*x*1/8+1/64+127/64

=(x+1/8)^2+127/64>=127/64>0 với mọi x

=>ĐPCM

b: 2x^2+3x+1

=2(x^2+3/2x+1/2)

=2(x^2+2*x*3/4+9/16-1/16)

=2(x+3/4)^2-1/8 

Biểu thức này ko thể luôn dương nha bạn

c: 9x^2-12x+5

=9x^2-12x+4+1

=(3x-2)^2+1>=1>0 với mọi x

d: (x+2)^2+(x-2)^2

=x^2+4x+4+x^2-4x+4

=2x^2+8>=8>0 với mọi x

Lương Thùy Linh
Xem chi tiết
Không Tên
14 tháng 7 2018 lúc 21:27

a)  \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)       với mọi x

b)   \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x

c)  \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)  với mọi x,y

d)  bạn kiểm tra lại đề câu d) nhé:

 \(x^2+4y^2+z^2-2x-6y+8z+15\)

\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)

Lương Thùy Linh
14 tháng 7 2018 lúc 21:55

Đề câu d đúng mà!

Đặng Thiên Long
Xem chi tiết
Lyzimi
1 tháng 8 2016 lúc 11:36

= (x2-7x+6)(x2-7x+12)+9

đặt x2-7x+9=a ta đc 

(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)

SKT_ Lạnh _ Lùng
1 tháng 8 2016 lúc 11:41

Chứng minh rằng các biểu thức sau luôn dương với mọi x

a) a+ b2 + 2 - 4ab         (>= 0)

b) (x-1)(x-3)(x-4)(x-6)+9             (>=0)

= (x2-7x+6)(x2-7x+12)+9

đặt x2-7x+9=a ta đc 

(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)

SKT_ Lạnh _ Lùng
1 tháng 8 2016 lúc 11:50

Chứng minh rằng các biểu thức sau luôn dương với mọi x

a) a+ b2 + 2 - 4ab         (>= 0)

b) (x-1)(x-3)(x-4)(x-6)+9             (>=0)

= (x2-7x+6)(x2-7x+12)+9

đặt x2-7x+9=a ta đc 

(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)

ngtt
Xem chi tiết
Toru
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

TFBoys
Xem chi tiết
Viet hung Nguyen
13 tháng 9 2018 lúc 20:03

câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x 

câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x

Viet hung Nguyen
13 tháng 9 2018 lúc 20:06

2 câu cuối ko rõ đề

le chi
Xem chi tiết
Phạm Tuấn Đạt
7 tháng 7 2018 lúc 15:07

\(4x^2-x+\frac{1}{2}\)

\(=\left(2x\right)^2-x.2.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\)

\(=\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}.Với\forall x\in R\)

\(\RightarrowĐPCM\)

đỗ thị bích hạnh
7 tháng 7 2018 lúc 15:47

   4x^2-x +1/2

= (2x -1/2)^2 +1/4 > 1/4 với mọi x

vậy 4x^2 -x +1/2 luôn có giá trị dương với mọi x