Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
D O T | ➽『Nhàn』亗
Xem chi tiết
Xyz OLM
18 tháng 10 2020 lúc 12:40

a) Ta có\(\frac{3a-b}{3a+b}=\frac{3c-d}{3c+d}\)

=> (3a - b)(3c + d) = (3a + b)(3c - d)

=> 9ac + 3ad - 3bc - bd = 9ac - 3ad + 3bc - bd

=> 3ad - 3bc = -3ad + 3bc

=> 3ad + 3ad = 3bc + 3bc

=> 6ad = 6bc

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó \(\frac{b^2+d^2}{a^2+c^2}=\frac{b^2+d^2}{\left(bk\right)^2+\left(dk\right)^2}=\frac{b^2+d^2}{d^2k^2+d^2k^2}=\frac{b^2+d^2}{k^2\left(b^2+d^2\right)}=\frac{1}{k^2}\)(1);

\(\frac{bd}{ac}=\frac{bd}{bkdk}=\frac{1}{k^2}\left(2\right)\)

Từ (1)(2) => \(\frac{b^2+d^2}{a^2+c^2}=\frac{bd}{ac}\)(đpcm)

Khách vãng lai đã xóa
Lâm Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 5 2022 lúc 13:44

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a-c}{3b-d}=\dfrac{3bk-dk}{3b-d}=k\)

\(\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=k\)

Do đó: \(\dfrac{3a-c}{3b-d}=\dfrac{2a+3c}{2b+3d}\)

c: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)

\(\dfrac{2ab+b^2}{2cd+d^2}=\dfrac{2\cdot bk\cdot b+b^2}{2\cdot dk\cdot d+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{2ab+b^2}{2cd+d^2}\)

Hoàng Minh Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 23:47

a: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)

Blaze
Xem chi tiết

a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của day tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)

 

Shuu
19 tháng 8 2021 lúc 7:33

Bài 1:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

(ĐPCM)

b, Ta có \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=x\)

Xét \(x^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

=>(đpcm)

Trung Đỗ Minh
Xem chi tiết
Thuỳ Linh Nguyễn
17 tháng 3 2023 lúc 8:04

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng t/c của DTSBN , ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+b}{2c+d}=\dfrac{3a-b}{3c-d}\\ \Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{3a-b}{3c-d}\\ \Rightarrow\dfrac{2a+b}{3a-b}=\dfrac{2a+d}{3c-a}\left(đpcm\right)\)

Tuấn Minh Phan Nguyễn
Xem chi tiết
Lê Minh Anh
27 tháng 8 2016 lúc 17:49

Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)

a/ Ta có: ad = bc  => ac - ad  = ac - bc   => a . (a - d) = c . (a - b)  => \(\frac{a}{a-b}=\frac{c}{c-d}\)

b/ Ta có: ad = bc  => 3ac - ad = 3ac - bc  => a . (3c - d) = c . (3a - b)  => \(\frac{a}{3a-b}=\frac{c}{3c-d}\)

Nguyễn Trang Quyên
Xem chi tiết
๖Fly༉Donutღღ
21 tháng 8 2017 lúc 19:39

Có 2 cách nhưng làm cách 2 cho bạn dễ hiểu :)

Ta có :   \(\frac{a}{b}\)=   \(\frac{c}{d}\)

\(\Rightarrow\)ad = bc

\(\Rightarrow\)3ac + ad = 3ac + bc3ac + ad = 3ac + bc

\(\Rightarrow\)a( 3c + d ) = c ( 3a + b ) = c ( 3a + b )

\(\Rightarrow\)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)   ( ĐPCM )

Yoriichi Tsugikuni
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 20:52

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

Dương Khánh Vy
Xem chi tiết
Kirigawa Kazuto
5 tháng 10 2016 lúc 19:39

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)

Ta có : 

\(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(1\right)\)

\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)

Từ 1 và 2 

=> \(\frac{a}{3a+b}=\frac{c}{3c+d}\)

 

Nguyễn Huy Tú
5 tháng 10 2016 lúc 19:45

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=b.k,c=d.k\)

Ta có:

\(\frac{a}{3a+b}=\frac{b.k}{3.b.k+b}=\frac{b.k}{b.\left(3.k+1\right)}=\frac{k}{3.k+1}\) (1)

\(\frac{c}{3c+d}=\frac{d.k}{3.d.k+d}=\frac{d.k}{d.\left(3.k+1\right)}=\frac{k}{3.k+1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{3a+b}=\frac{b}{3c+d}\)

Giang Thủy Tiên
10 tháng 10 2017 lúc 20:38

Hỏi đáp Toán