tìm x biết (x+1/1.3).(1+1/2.4)..............(1+1/x.(x+2))=4016/2007
tìm x biết (x+1/1.3).(1+1/2.4). (1+1/3.5)...........(1+1/x.(x+2))=4016/2007
Tìm x, biết \(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{x\left(x+2\right)}\right)=\frac{4016}{2007}\)
Tìm x biết \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...[1+\dfrac{1}{x\left(x+2\right)}]=\dfrac{4016}{2007}\)
Tìm x:
a)\(2016x+\left(\dfrac{7}{12}+\dfrac{4}{21}+\dfrac{2}{24}+\dfrac{11}{30}+\dfrac{3}{40}+\dfrac{15}{56}\right)-\left(\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}\right)=0\)
b\(\dfrac{2x-1}{x+2015}-\dfrac{4025}{x+2017}=\dfrac{x-2014}{2x-4036}-\dfrac{x-2013}{2x-4030}\) (x thuộc N)
c)\(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{4016}{2007}\)
AI GIÚP MK VỚI MK TICK CHO
Tìm x€ Z, biết:
1) 7/11 x -3/7< x< -1/5 :1/20 -(-2)3
2) tính tổng S= 1/1.3 + 1/2.4 + 1/3.5 +...+1/7.9 + 1/8.10
Cách làm
Tìm x biết 1/1.3 - 1/2.4 + 1/3.5 - 1/4.6 + ...+ 1/97.99 - 1/98.100 + 3lxl = 1
1/1.3 - 1/2.4 + 1/3.5 - 1/4.6 + ...+ 1/97.99 - 1/98.100 + 3lxl = 1
tách ra trc đầu tiên tính phần : 1/1.3 - 1/2.4 + 1/3.5 - 1/4.6 + ...+ 1/97.99 - 1/98.100
tách số lẻ và số chẵn ra
(1/1.3+1/3.5+...+1/57.97+1/97.99)-(1/2.4+1/4.6+...1/98.100)
tính từng vế vế đầu kết qu3 vế lẻ là : 49/99
kết quả vế chẵn là 49/200
thì bài đó sẻ thành : 49/99+49/200+3lxl=1
còn lại tự tinh nha
co (1+1/1*3)*(1+1/2*4)*.......*(1+1/x*(x+2))=4016/2007
timx thoa man
lam on giup minh nhanh len
B1:Tính nhanh:
a)M= -1/3 . 141/17 - 39/3 . -1/17
b)N= -9/16 . 13/3 - (-3/4)^2 . 19/3
c)P=(1+1/1.3) (1+1/2.4) (1+1/3.5)......(1+1/99.101)
B2:Tìm x,biết
a)1/2+3/2:x=1/4
b)3/4+1/4.x=7
c)1/2.4 + 1/4.6 +.........+1/(2x-2).2x = 11/48
B3:Tìm x,biết
a)(x-1/2)^2=1/81
b)x+x(1+1/x)+x(1+2/x)=1/3
c)2/x+4=3/x+5
tim x ϵ N* biết \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left[1+\dfrac{1}{x\left(x+2\right)}\right]=\dfrac{31}{16}\)
\(\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right).\left(1+\dfrac{1}{3.5}\right).........\left[1+\dfrac{1}{x.\left(x+2\right)}\right]=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}........\dfrac{\left(x+1\right)^2}{x.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left[2.3.4.............\left(x+1\right)\right].\left[2.3.4.............\left(x+1\right)\right]}{\left(1.2.3...................x\right).\left(3.4.5..........................\left(x+2\right)\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left(x+1\right).2}{1.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow16.2\left(x+1\right)=31.\left(x+2\right)\)
\(\Rightarrow32x+32=31x+62\)
\(\Rightarrow x=30\)
Vậy x=30
Chúc bn học tốt
ĐKXĐ: \(x\notin\left\{0;-2\right\}\)
Ta có: \(\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{1\cdot3+1}{1\cdot3}+\dfrac{1+2\cdot4}{2\cdot4}+\dfrac{1+3\cdot5}{3\cdot5}\cdot...\cdot\dfrac{1+x\left(x+2\right)}{x\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{2\cdot2}{1\cdot3}+\dfrac{3\cdot3}{2\cdot4}+\dfrac{4\cdot4}{3\cdot5}+...+\dfrac{\left(x+1\right)\left(x+1\right)}{x\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{1\cdot2\cdot3\cdot...\cdot\left(x+1\right)}{1\cdot2\cdot3\cdot...\cdot x}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot\left(x+1\right)}{3\cdot4\cdot5\cdot...\cdot\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow\left(x+1\right)\cdot\dfrac{2}{x+2}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{2x+2}{x+2}=\dfrac{31}{16}\)
\(\Leftrightarrow\dfrac{32x+32}{16\left(x+2\right)}=\dfrac{31\left(x+2\right)}{16\left(x+2\right)}\)
Suy ra: \(32x+32=31x+62\)
\(\Leftrightarrow x=30\)(thỏa ĐK)
Vậy: S={30}