Tìm x thuộc Z:
(x3+5)(x3+10)(x3+15)(x3+30)
Tìm x ϵ Z để ( x3+5)( x3+10)(x3+15)(x3+30) <0
\(TH_1:x\ge0\Leftrightarrow x^3\ge0\Leftrightarrow VT>0\left(loại\right)\)
\(TH_2:x< 0\)
Với \(x=-1\Leftrightarrow VT=4\cdot9\cdot14\cdot29>0\left(loại\right)\)
Với \(x=-2\Leftrightarrow VT=-3\cdot2\cdot7\cdot23< 0\left(nhận\right)\)
Với \(x=-3\Leftrightarrow VT=-22\left(-17\right)\left(-12\right)\cdot3< 0\left(nhận\right)\)
Với \(x< -4\Leftrightarrow x^3< -64\Leftrightarrow x^3+5< x^3+10< x^3+15< x^3+30< 0\)
Do đó cả 4 thừa số trong tích đều âm nên tích này luôn dương
Vậy \(x\in\left\{-2;-3\right\}\)
Bài 1: Số(−3)20+1(−3)20+1 có phải là tích của hai số nguyên liên tiếp không?
Bài 2: Tìm x∈Zx∈Z biết (x+5)x (3x-12)>0
Bài 3: Tìmx∈Zx∈Z biết (x3+5)(x3+10)(x3+15)(x3+30)<0
Cau 1:
Tim x, biet: 1-4+7-10+.............-x=-75
Cau 2:
Cho x1, x2, x3, x4, x5 thuộc Z
Biết x1+ x2 + x3 + x4 + x5=0
và x1 + x2=x3+ x4= x4 + x5 =2
Tinh x3, x4 , x5
Cau 3: Tim x biet
(x+7+1) chia het cho (x+7)
1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3) 3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2) 5. (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) 6. (2x3 – 5x2 + 6x – 15) : (2x – 5)
1: \(=x^2+1\)
3: \(=\left(x-y-z\right)^2\)
Bài 5: Giải các phương trình sau:
a. (3x - 1)2 - (x + 3)2 = 0
b. x3 = \(\dfrac{x}{49}\)
c. x2 - 7x + 12 = 0
d. 4x2 - 3x -1 = 0
e. x3 - 2x - 4 = 0
f. x3 + 8x2 + 17x +10 = 0
g. x3 + 3x2 + 6x + 4 = 0
h. x3 - 11x2 + 30x = 0
a. (3x - 1)2 - (x + 3)2 = 0
\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)
\(\Leftrightarrow4x+2=0\) hoặc \(2x-4=0\)
1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)
2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
S=\(\left\{-\dfrac{1}{2};2\right\}\)
b. \(x^3=\dfrac{x}{49}\)
\(\Leftrightarrow49x^3=x\)
\(\Leftrightarrow49x^3-x=0\)
\(\Leftrightarrow x\left(49x^2-1\right)=0\)
\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(7x+1=0\) hoặc \(7x-1=0\)
1. x=0
2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)
3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)
*Cách khác:
a) Ta có: \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(3x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=-x-3\\3x-1=x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-2\\2x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2};2\right\}\)
i) x3- 11x2 + 30x;
j) 4x4- 21x2y2 + y4
k) x3 + 4x2- 7x - 10;
l) (x2 + x)2- (x2 + x) + 15;
i) x3- 11x2 + 30x
=\(x\left(x^2-11x+30\right)\)
=\(x\left(x-6\right)\left(x-5\right)\)
j) 4x4- 21x2y2 + y4
=4x^4+4x^2y^2+y^4-25x^2y^2
=(2x^2+y^2)^2-(5xy)^2
=(2x^2+y^2-5xy)(2x^2+y^2+5xy)
Cho x1 ,x2, x3 , x4 , x5 thuộc z.
Biết x1+x2=x3+x4=x4+x5=2 và
Tất cả 5 số cộng lại = 0
Tính x5 , x4 và x3
giải
ta có :
\(x1+x2+x3+x4+x5=0\)
\(\left(x1+x2\right)+\left(x3+x4\right)+x5=0\)
\(\Rightarrow2+2+x5=0\Rightarrow x5=-4\)
mà \(x4+x5=2\Rightarrow x4+-4=2\Rightarrow x4=6\)
mặt khác : \(x3+x4=2\Rightarrow x3+6=2\Rightarrow x3=-4\)
vậy : x5 = -4 , x4 = 6 , x3 = -4
Ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(I\right)\\x_3+x_4=2\left(II\right)\\x_4+x_5=2\left(III\right)\\x_1+x_2+x_3+x_4+x_5=5\left(IV\right)\end{matrix}\right.\)
Thay (I) và (II) vào (IV) ta được : 2+2+x5=5 => x5=1
Thay x5=1 vào (III) ta được: x4=1
Thay x4=1 vào (II) ta được: x3=1
Vậy x3=x4=x5=1
C = ( x3 – 1)( x3 – 2)( x3 – 3) ……( x3 - 2014)( x3 – 2015) tại x = 5
\(C=\left(5^3-1\right)\cdot\left(5^3-2\right)\cdot...\cdot\left(5^3-125\right)\cdot...\cdot\left(5^3-2014\right)\cdot\left(5^3-2015\right)=0\)
Cứu với ạ
Làm tính chia
1) (x3 – 3x2 + x – 3) : (x – 3) 2) (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)
3) (x – y – z)5 : (x – y – z)3 4) (x2 + 2x + x2 – 4) : (x + 2)
5) (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) | 6) (2x3 – 5x2 + 6x – 15):(2x – 5) |
Tìm số tự nhiên x, biết
a) x 2 = 16
b) x 3 = 27
c) 2 . x 3 - 4 = 12
d) 5 . x 3 - 5 = 0