Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Người Vô  Danh
Xem chi tiết
Kaito Kid
Xem chi tiết
CTVHoidap
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2022 lúc 20:44

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

Nguyễn Việt Lâm
25 tháng 3 2022 lúc 20:56

2.

Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)

\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)

Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)

\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)

\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)

Do \(a;b;c\in\left[0;1\right]\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow ab+c+1\ge a+b+c=2\)

\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)

\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)

\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)

Hoàn toàn tương tự, ta có: 

\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)

Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)

\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)

\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng

pro
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 9:36

\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(A_{min}=3\) khi \(a=b=c=1\)

Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)

\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)

Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)

\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)

\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị

Trần Đại Nghĩa
Xem chi tiết
Lê Hoàng
17 tháng 3 2020 lúc 14:57

Với \(a,b,c\in Z\)

Trong \(a=2^b\cdot c\) có thừa số \(2^b>0\forall b\in Z\) nên \(a\) và \(c\) phải cùng dấu

\(TH1\): Với \(a,c\le-1\) (âm):

Ta có: \(9^a\notin Z\) (vì có số mũ âm)

\(\Rightarrow9^a+952\notin Z\) (vì \(952\in Z\)), mà \(\left(b+41\right)^2\in Z\) (vì \(b\in Z,41\in Z\))

\(\Rightarrow9^a+952\ne\left(b+41\right)^2\)

\(TH2\): Với \(a,c\ge0\) (không âm):

(I) Với \(b\ge1\):

Ta có: \(2^b⋮2\) (vì \(b\ge1\)\(\Rightarrow a=2^b\cdot c⋮2\) \(\Rightarrow\) \(a\) chẵn

\(\Rightarrow9^a\) có số mũ \(a\) chẵn, thì \(9^a\) có chữ số tận cùng là 1

\(\Rightarrow9^a+952\) có chữ số tận cùng là 1 + 2 = 3

Ta lại có: \(\left(b+41\right)^2\) không bao giờ có chữ số tận cùng là 3 (vì số chính phương không bao giờ có chữ số tận cùng là 3)

Từ đó, \(9a+952\ne\left(b+41\right)^2\)

(II) Với \(b\le0\):

Ta có: \(a=2^b\cdot c\Leftrightarrow c=\frac{a}{2^b}\)

\(9^a>0\forall a\in Z\Rightarrow9^a+952>0\forall a\in Z\)

Nếu \(a\) là số chẵn thì không thể tìm được \(b,c\in Z\) (đã chứng minh trên).

Với \(a\) lẻ thì \(9^a\) thì có chữ số tận cùng là 9 \(\Rightarrow9^a+952\) có chữ số tận cùng là 1.

\(9^a+952=\left(b+41\right)^2\Leftrightarrow b+41=\pm\sqrt{9^a+952}\)

Vì \(b+41\in Z\) (chứng minh trên), nên \(9^a+952\in Z\Rightarrow9^a+952\) là số chính phương, mà \(9^a+952\)lẻ.

\(\Rightarrow9^a+952\) chia 8 dư 1 \(\Rightarrow9^a\) chia 8 dư 1 (vì \(952⋮8\))

Chỉ tìm được \(a=1,a=3\) thoả mãn điều kiện trên (\(9^1=9\) chia 8 dư 1, \(9^3=729\) chia 8 dư 1).

- Thay \(a=1\), ta có: \(b+41=\pm\sqrt{9+952}=\pm\sqrt{961}=\pm31\Leftrightarrow b\in\left\{-72;-10\right\}\)

\(c\in\left\{\frac{1}{2^{-72}};\frac{1}{2^{-10}}\right\}=\left\{2^{72};2^{10}\right\}\)

Ta được các cặp \(\left(a;b;c\right)=\left(1;-72;2^{72}\right),\left(1;-10;2^{10}\right)\).

- Thay \(a=3\), ta có: \(b+41=\pm\sqrt{9^3+952}=\pm41\Leftrightarrow b\in\left\{-82;0\right\}\)

\(c\in\left\{\frac{3}{2^{-82}};\frac{3}{2^0}\right\}=\left\{2^{82}\cdot3;3\right\}\)

Ta được các cặp \(\left(a;b;c\right)=\left(3;-82;2^{82}\cdot3\right),\left(3;0;3\right)\).

Nếu đề bài cho là \(b\) không âm thì \(a=3,b=0,c=3\) là các số cần tìm.

P/S: Nếu mà đề bài cho \(b\) không âm thì không cần phải trình bày dài dòng như trên.

\(b\le0\) (từ \(TH2\) phần II) và \(b\ge0\) (\(b\) không âm), tức là \(b=0\) (\(a=2^0\cdot c=1\cdot c=c\)), rồi không cần trình bày dài dòng như trên, mà chỉ cần thay \(b=0\) vào phương trình \(9^a+952=\left(b+41\right)^2\) là tìm được \(a=c=3\) ngay.

Khách vãng lai đã xóa
ducquang050607
Xem chi tiết
Rhider
Xem chi tiết
pham trung thanh
Xem chi tiết
Doãn Thanh Phương
4 tháng 3 2018 lúc 19:08

=> Theo bđt cô si ta có : B≥33√(x2+1y2 )(y2+1z2 )(z2+1x2 )

=> B≥33√2·xy ·2·yz ·2·zx =33√8=6 

( Chỗ này là thay x2+1y2 ≥2√x2y2 =2·xy  và 2 cái kia tương tự vào )

=> Min B=6

Mình nhầm chỗ câu b, sửa lại là :

B≥33√√(x2+1y2 )(y2+1z2 )(z2+1x2 )

Bạn làm tương tự => B≥3√2.

Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 22:25

Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:

Min:

\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)

\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)

\(\Rightarrow P\ge\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị