Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 9 2017 lúc 3:06

 

Đáp án B

 

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:23

loading...

a) Ta có:

\(\left. \begin{array}{l}S \in \left( {SC{\rm{D}}} \right) \cap \left( {SAB} \right)\\C{\rm{D}}\parallel AB\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\\AB \subset \left( {SAB} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SAB} \right)\) là đường thẳng \(d\) đi qua \(S\), song song với \(C{\rm{D}}\) và \(AB\).

b) Ta có:

\(\begin{array}{l}BC = \left( {BCM} \right) \cap \left( {ABC{\rm{D}}} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\MN = \left( {BCM} \right) \cap \left( {SA{\rm{D}}} \right)\\BC\parallel A{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(A{\rm{D}}\parallel BC\parallel MN\).

Vậy tứ giác \(CBMN\) là hình thang.

Lê Hải Yến
Xem chi tiết
Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 8 2023 lúc 12:10

- Ta có: AB thuộc (SAB)

            CD thuộc (SCD)

Mà AB // CD, S là điểm chung của hai mặt phẳng (SAB) và (SCD).

Từ S kẻ Sx sao cho Sx // AB // CD. 

Vậy Sx là giao tuyến của hai mặt phẳng (SAB) và (SCD).

- Tương tự ta có: Sy là giao tuyến của hai mặt phẳng (SAD) và (SBC) sao cho Sy // AD // BC. 

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
22 tháng 9 2023 lúc 22:10

Tham khảo:

a) Gọi E là giao điểm của AB và CD

Vì AB thuộc mp (SAB) nên E là giao điểm của CD và (SAB)

b) Ta có: S thuộc hai mặt phẳng (SAB) và (SCD)

          E thuộc hai mặt phẳng (SAB) và (SCD)

Suy ra SE là giao tuyến của hai mặt phẳng (SAB) và (SCD)

c) Trong mp (SAB), gọi G là giao điểm của ME và SB

Mà SB thuộc (SBC), ME thuộc (MCD)

Do đó: G thuộc hai mặt phẳng (MCD) và (SBC)

          C thuộc hai mặt phẳng (MCD) và (SBC)

Suy ra CG là giao tuyến của hai mặt phẳng (MCD) và (SBC).

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 5:28

2:

a: AD và BC là hai đường thẳng song song

b: \(S\in\left(SAB\right)\)

\(S\in\left(SCD\right)\)

Do đó:S là giao điểm của hai mặt phẳng (SAB) và (SCD)

c: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó; \(\left(SAB\right)\cap\left(SCD\right)=mn\), mn đi qua S và mn//AB//CD

 

babbbdbw
Xem chi tiết
Buddy
Xem chi tiết
Quoc Tran Anh Le
23 tháng 8 2023 lúc 14:56

loading...

a) Gọi giao điểm của AD và BC là K.

Ta có: SK cùng thuộc mp(SAD) và (SBC).

Vậy SK là giao tuyến của (SAD) và (DBC).

b) (SAB) và (SCD) có AB // CD và S chung nên giao tuyến là dường thẳng Sx đi qua x và song song với AB và CD.

c) Gọi là giao điểm của AC và BD suy ra O thuộc giao tuyến của (SAC) và (SBC)

Suy ra SO là giao tuyến của (SAC) và (SBD).

Thuy Tram
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 10:48

1: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

=>\(\left(SAC\right)\cap\left(SBD\right)=SO\)

AB//CD

S thuộc (SAB) giao (SCD)

=>(SAB) giao (SCD)=xy, xy qua S, xy//AB//DC

2: 

Xét ΔSBC có SM/SB=SN/SC

nên MN//BC

=>MN//AD

=>AMND là hình thang

Xét ΔSBD có BM/BS=BO/BD

nên MO//SD

=>MO//(SAD)