Cho hình chóp SABCD có đáy ABCD là hình bình hành.
a) Xác định giao tuyến của (SAB) và (SCD); (SAD) và (SBC).
b) Gọi M\(\in SC\), tìm giao tuyến của (ABM) và (SCD).
c) Gọi N\(\in SB\), tìm giao tuyến của (SAB) và (NCD).
Cho hình chóp SABCD có đáy là hình bình hành. Giao tuyến của (SAB) và (SCD) là:
A. Đường thẳng qua Svà song song với AD
B. Đường thẳng quaSvà song song với CD
C. Đường SO với Olà tâm hình bình hành.
D. Đường thẳng qua S và cắt AB
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành.
a) Tìm giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SAB} \right)\).
b) Lấy một điểm \(M\) trên đoạn \(SA\) (\(M\) khác \(S\) và \(A\)), mặt phẳng \(\left( {BCM} \right)\) cắt \(SD\) tại \(N\). Tứ giác \(CBMN\) là hình gì?
a) Ta có:
\(\left. \begin{array}{l}S \in \left( {SC{\rm{D}}} \right) \cap \left( {SAB} \right)\\C{\rm{D}}\parallel AB\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\\AB \subset \left( {SAB} \right)\end{array} \right\}\)
\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SAB} \right)\) là đường thẳng \(d\) đi qua \(S\), song song với \(C{\rm{D}}\) và \(AB\).
b) Ta có:
\(\begin{array}{l}BC = \left( {BCM} \right) \cap \left( {ABC{\rm{D}}} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\MN = \left( {BCM} \right) \cap \left( {SA{\rm{D}}} \right)\\BC\parallel A{\rm{D}}\end{array}\)
Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(A{\rm{D}}\parallel BC\parallel MN\).
Vậy tứ giác \(CBMN\) là hình thang.
Chóp SABCD có đáy ABCD là hình bình hành. Lấy G, H, K lần lượt là trọng tâm các tam giác SAB, SAD, BCD. Tìm giao tuyến của (GHK) và (SCD)
Cho hình chóp S.ABCD có đáy là hình bình hành. Xác định giao tuyến của các cặp mặt phẳng (SAB) và (SCD); (SAD) và (SBC).
- Ta có: AB thuộc (SAB)
CD thuộc (SCD)
Mà AB // CD, S là điểm chung của hai mặt phẳng (SAB) và (SCD).
Từ S kẻ Sx sao cho Sx // AB // CD.
Vậy Sx là giao tuyến của hai mặt phẳng (SAB) và (SCD).
- Tương tự ta có: Sy là giao tuyến của hai mặt phẳng (SAD) và (SBC) sao cho Sy // AD // BC.
Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi M là trung điểm của SA.
a) Xác định giao điểm của CD với hai mặt phẳng (SAB) và (SCD)
b) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD)
c) Xác định giao tuyến của hai mặt phẳng (MCD) và (SBC)
Tham khảo:
a) Gọi E là giao điểm của AB và CD
Vì AB thuộc mp (SAB) nên E là giao điểm của CD và (SAB)
b) Ta có: S thuộc hai mặt phẳng (SAB) và (SCD)
E thuộc hai mặt phẳng (SAB) và (SCD)
Suy ra SE là giao tuyến của hai mặt phẳng (SAB) và (SCD)
c) Trong mp (SAB), gọi G là giao điểm của ME và SB
Mà SB thuộc (SBC), ME thuộc (MCD)
Do đó: G thuộc hai mặt phẳng (MCD) và (SBC)
C thuộc hai mặt phẳng (MCD) và (SBC)
Suy ra CG là giao tuyến của hai mặt phẳng (MCD) và (SBC).
1) cho hình chóp S.ABCD đáy ABCD là hình bình hành. Xét vị trí của AB và CD
2) cho hình chóp S.ABCD đáy ABCD là hình vuông
a) xét vị trí của AD và BC
b) tìm giao điểm của 2 mặt phẳng (SAB) và (SCD)
c) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
2:
a: AD và BC là hai đường thẳng song song
b: \(S\in\left(SAB\right)\)
\(S\in\left(SCD\right)\)
Do đó:S là giao điểm của hai mặt phẳng (SAB) và (SCD)
c: AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó; \(\left(SAB\right)\cap\left(SCD\right)=mn\), mn đi qua S và mn//AB//CD
Bài 3: Cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O Gọi M, N lần lượt là trung điểm của SB, BC
a)Tìm giao tuyến của (SAB ) và (SCD)
b)Tìm giao tuyến của (OMN) và (SAC)
c)Tìm giao điểm E của MN và (SAD)
d)Tìm giao điểm Fcủa SCvà (ADM)
e)Chứng minh CD//(OMN) và DF//(OMN)
f)Tìm thiết diện của (OMN) với hình chóp S.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau:
a) (SAD) và (SBC)
b) (SAB) và (SCD)
c) (SAC) và (SBD)
a) Gọi giao điểm của AD và BC là K.
Ta có: SK cùng thuộc mp(SAD) và (SBC).
Vậy SK là giao tuyến của (SAD) và (DBC).
b) (SAB) và (SCD) có AB // CD và S chung nên giao tuyến là dường thẳng Sx đi qua x và song song với AB và CD.
c) Gọi O là giao điểm của AC và BD suy ra O thuộc giao tuyến của (SAC) và (SBC)
Suy ra SO là giao tuyến của (SAC) và (SBD).
Cho hình chóp SABCD, đáy ABCD là hình bình hành có tâm O và M,N là lần lượt là trung điểm SB,SC.
1/ Tìm giao tuyến (SAC) với (SBD) và (SAB) với (SCD)
2/ Chứng minh ADNM là hình thang và MO // (SAD)
3/ Gọi K là giao điểm của AN và DM. Chứng minh ba điểm S,O,K thẳng hàng
4/ Gọi E trên đường chéo AC sao cho AE=2EC. Chứng minh KE // (SBC)
1: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
=>\(\left(SAC\right)\cap\left(SBD\right)=SO\)
AB//CD
S thuộc (SAB) giao (SCD)
=>(SAB) giao (SCD)=xy, xy qua S, xy//AB//DC
2:
Xét ΔSBC có SM/SB=SN/SC
nên MN//BC
=>MN//AD
=>AMND là hình thang
Xét ΔSBD có BM/BS=BO/BD
nên MO//SD
=>MO//(SAD)