Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quyên Đỗ Trần Tâm
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 11:05

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\\ \Rightarrow3B-B=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\\ \Rightarrow2B=3^{101}-3\\ \Rightarrow B=\dfrac{3^{101}-3}{2}\)

ng.nkat ank
29 tháng 11 2021 lúc 11:10

B = 31 + 32 + 33 + .... + 399 + 3100

3B = 3(31 + 32 + 33 + ..... + 399 + 3100)

3B = 32 + 33 + 34 +...... + 3100 + 3101

3B - B = 2B = (32 + 33 + 34 + .... + 3100 + 3101) - ( 31 + 32 + 33 + .... + 3100)

2B = (32 - 32) + (33 - 33) +.....+ ( 3100 - 3100) + ( 3101 - 1)

2B = 0 + 0 + 0 + ..... +0 + 3101 - 1

2B = 3101 - 1

B = (3101 - 1)  : 2

Lưu Dung
Xem chi tiết
Uzimaru Naruto
12 tháng 1 2017 lúc 16:56

Bài 1 :

chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42

ta thấy 42 = 2 x 3 x  7

A chia hết 42 suy ra A phải chia hết cho 2;3;7

mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2  (1)

số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )

ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )

suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )

A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3 

A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3 

suy ra A chia hết cho 3 ( 2 )

ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )

suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )

A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )

A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7

A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7 

suy ra A chia hết cho 7 (3)

từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7 

suy ra A chia hết cho 42 ( điều phải chứng minh )

minqưerty6
Xem chi tiết
HT.Phong (9A5)
21 tháng 10 2023 lúc 11:46

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

Cô Bé Mùa Đông
Xem chi tiết
kodo sinichi
6 tháng 1 2023 lúc 15:46

ta có :

`1^3` \(⋮\) `1`

\(2^3⋮2\)

\(3^3⋮3\)

.................

\(100^3⋮100\)

`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)

vậy `A` \(⋮\)`B`

Đặng Phương Nhung
Xem chi tiết
nguyễn tấn thành
21 tháng 9 2015 lúc 22:12

b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)

=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)

=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)

=3+3^2.13+3^5.13+.........+3^58.13

=3.13.(3^2+3^5+....+3^58)

vi tich tren co thua so 13 nen tich do chia het cho 13

=

nguyễn tấn thành
21 tháng 9 2015 lúc 22:02

bai1

a) A=(31+32)+(33+34)+...+(359+360)

=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)

=3^1.(1+3)+...+3^59.(1+3)

=3^1.4+....+3^59.4

=4.(3^1+...+3^59)

vi tich tren co thua so 4 nen tich do chia het cho 4

Nguyen Thu Ha
20 tháng 8 2016 lúc 5:07

Bài 2:(12a + 36b) = (12a + 12 x 3 x b) = 12( a + 3b)chia hết cho 12

Yuki_Kali_Ruby
Xem chi tiết
amazing
17 tháng 10 2021 lúc 18:58

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

Khách vãng lai đã xóa
Nguyễn Hà Phương
Xem chi tiết
Phan Văn Hiếu
8 tháng 8 2016 lúc 17:59

Bài 1

a) 3+ 3+ 3+ 3= 34(1 + 3 + 3+ 33)\

b) a)A = 1 + 3 + 32 +......399 =(1 + 3 +  32 + 33 ) + ...+(396 + 397 + 398 + 399)

                                          =   (1 + 3 +  32 + 33 ) + .. +396(1 + 3 +  32 + 33 )

                                          = 40 + ... + 396 . 40 

                                          = 40 (1 + 3 +...+ 396) chia hết cho 40

Phan Văn Hiếu
8 tháng 8 2016 lúc 18:16

Bài 2 

a)

+)A chia hết cho 6

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)

\(A=30+5^2.30+...+5^{2002}.30\)

\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6

+)A chia hết cho 31

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)

\(A=155+5^3.155+...+5^{2001}.155\)

\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31

+) A chia hết cho 156

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)

\(A=780+5^4.780+...+5^{2000}.780\)

\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156

b)B=165+2^15 chia hết cho 33

ta có 165 chia hết cho 33

mà 215 ko chia hết cho 33

vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.

ngô thị mai
5 tháng 10 2017 lúc 19:12

chứng tỏ A= 1+\(3^1\)+\(3^2\)+....+\(3^{99}\)là B(4) và là B (40).

Xem chi tiết

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

Genj Kevin
19 tháng 4 2021 lúc 21:01

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

⇔A<1102

Genj Kevin
19 tháng 4 2021 lúc 21:02

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

⇔A^2< 1/101

Xem chi tiết

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102