√5x³. √125x (x>0)
a) x2-5x=0
b)x4=125x
c)3x+3x+2=90
a) \(x^2-5x=0\)
\(x\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
b) \(x^4=125x\)
\(x^4-125x=0\)
\(x\left(x^3-125\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^3-125=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
c) \(3^x+3^{x+2}=90\)
\(3^x\left(1+3^2\right)=90\)
\(3^x\cdot10=90\)
\(3^x=9=3^2\)
\(\Rightarrow x=2\)
a) x2 - 5x = 0
x.(x-5) = 0
=> x = 0
x-5 = 0 => x = 5
KL:...
b) x4 = 125x
=> x3 = 125 = 53
=> x = 5
c) 3x + 3x+2 = 90
3x + 3x.9 = 90
3x.(1+9) = 90
3x.10 = 90
3x = 9 = 32
=> x = 2
\(x^2-5x=0\)
\(\Rightarrow x\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
\(x^4=125x\)
\(\Rightarrow x^4-125x=0\)
\(\Rightarrow x\left(x^3-125\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^3=125\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^3=5^3\end{cases}\Rightarrow}}\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
\(3^x+3^{x+2}=90\)
\(\Rightarrow3^x+3^x.3^2=90\)
\(\Rightarrow3^x\left(3^2+1\right)=90\)
\(\Rightarrow3^x.10=90\)
\(\Rightarrow3^x=9\Rightarrow3^x=3^2\Rightarrow x=2\)
Phân tích đa thức thành nhân tử: A=5x³-125x B=x³-8+(2-x).(4-5x)
\(A=5x^3-125x=5x\left(x-5\right)\left(x+5\right)\)
\(B=x^3-8+\left(x-2\right)\left(5x+4\right)\)
\(=\left(x-2\right)\left(x^2+2x+4+5x+4\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x+4\right)\)
5X2=125X. Tìm X
Tìm x
a, (x+2)^3 - x(x^2+6x-3)=0
b,(x+4)^3 - x(x+6)^2=7
c, (x-1)^3 - x(x^2-3x-2)=0
d,1000x^3+90x(10x+3)+27=0
e,125x^3+15x(5x+1)= -1
f, 27x^3+45x(3x+5)+133=0
a, \(\left(x+2\right)^3-x\left(x^2+6x-3\right)=0\Leftrightarrow x^3+4x^2+4x+2x^2+8x+8-x^3-6x^2+3x=0\)
\(\Leftrightarrow15x+8=0\Leftrightarrow x=-\frac{8}{15}\)
b, \(\left(x+4\right)^3-x\left(x+6\right)^2=7\Leftrightarrow12x+64=0\Leftrightarrow x=-\frac{19}{4}\)làm tắt:P
Tự làm nốt nhé
P(x) = 125x^3 - 5x tìm nghiệm của đa thức
Có:
\(125x^3-5x=0\)
\(\Rightarrow x.\left(125x^2-5\right)=0\)
\(\Rightarrow\) x=0 hoặc 125x2-5 =0
\(\Rightarrow\) x=0 hoặc 125x2=5
\(\Rightarrow\) x=0 hoặc x2=\(\frac{5}{125}=\frac{1}{25}\)
\(\Rightarrow\) x=0 , \(x=-\frac{1}{5}\)hoặc \(x=\frac{1}{5}\)
Vậy \(x\in\left\{-\frac{1}{5};0;\frac{1}{5}\right\}\)
ta có:P(x) = 125x^3 - 5x=0
f(x)g(x)<=>f(x)=0 hoặc g(x)=0
125x^3 - 5x=5x(5x-1)(5x+1) (*)
thay (*) vào VT ta đc
5x(5x-1)(5x+1)=0
Th1:5x=0
=>x=0
Th2:5x-1=0
=>5x=1
=>x=\(\frac{1}{5}\)
Th3:5x+1=0
=>5x=-1
=>x=\(-\frac{1}{5}\)
vậy các nhiệm các đa thức trên là x=±\(\frac{1}{5}\);0
(125x^3 -1) : (25x^2 +5x +1)
(125x3 - 1) : (25x2 + 5x + 1)
= (5x - 1)(25x2 + 5x + 1) : (25x2 + 5x + 1)
= 5x - 1
Chia đa thức một biến:
a. (x^2+2xy+y^2):(x+y)
b. (125x^3+1):(5x+1)
c. (x^2-2xy+y^2):(y-x)
a, \(\left(x^2+2xy+y^2\right):\left(x+y\right)=\left(x+y\right)^2:\left(x+y\right)=x+y\)
b, \(\left(125x^3+1\right):\left(5x+1\right)=\left(5x+1\right)\left(25x^2-5x+1\right):\left(5x+1\right)=25x^2-5x+1\)
c, \(\left(x^2-2xy+y^2\right):\left(y-x\right)=\left(x-y\right)^2:\left(y-x\right)=\left(y-x\right)^2:\left(y-x\right)=y-x\)
làm giúp mik theo cột nha mn
rút gọn
\(\dfrac{\sqrt{125x^2}}{\sqrt{25x}}\) với x >0
\(=\sqrt{\dfrac{125x^2}{25x}}=\sqrt{5x}\)
\(=\dfrac{5\sqrt{5}\left|x\right|}{5\sqrt{x}}\)
\(=\dfrac{\sqrt{5}x}{\sqrt{x}}\)(vì x>0)
\(=\sqrt{5x}\)
Phân tích đa thức thành nhân tử
125x^3-5x-3y+27y
** Sửa: $125x^3-5x-3y+27y^3$
-------------
Lời giải:
$125x^3-5x-3y+27y^3=(125x^3+27y^3)-(5x+3y)$
$=[(5x)^3+(3y)^3]-(5x+3y)$
$=(5x+3y)(25x^2-15xy+9y^2)-(5x+3y)$
$=(5x+3y)(25x^2-15xy+9y^2-1)$