Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khang

Những câu hỏi liên quan
BÍCH THẢO
Xem chi tiết
Dương Minh Hoàng
21 tháng 8 2023 lúc 15:18

a,

`3A=3+3^3+3^3+...+3^{53}`

`3A-A=(3+3^3+3^3+...+3^{53})-(1+3+3^3+3^3+...+3^{52})`

`2A=3^{53}-1`

`A=(3^{53}-1)/2`

b,

`A=1+3+3^3+3^3+...+3^{52}`

`A=(1+3+3^2)+(3^3+3^4+3^5)+....+(3^{50}+3^{51}+3^{52})`

`A=(1+3+3^2)+3^3*(1+3+3^2)+....+3^{50}*(1+3+3^2)`

`A=(1+3+3^2)*(1+3^3+....+3^{50})`

`A=13*(1+3^3+....+3^{50})`

Do `13 \vdots 13 => A=13*(1+3^3+....+3^{50})\vdots 13 `

Vậy `A \vdots 13 `

Duy Ngô
Xem chi tiết
Nguyễn Ngọc Huy Toàn
10 tháng 3 2022 lúc 17:36

A

NGUYỄN♥️LINH.._.
10 tháng 3 2022 lúc 17:36

Nguyễn acc 2
10 tháng 3 2022 lúc 17:36

A

Đới Quang Huy
Xem chi tiết
Diệu Anh
20 tháng 2 2020 lúc 10:46

a) ( -96) +64

= -32

b) | -29| + ( -11)

= 29 + ( -11)

=18

c) ( -367) +(-33)

=400

d) (-45)-30

= -15

e) (-28)-(-32)

= -28 + 32

= 4

f) ( -3) + 350 + (-7) +350

= -10 + 350+350

= 340+350

= 690

g) (-1075) -(29-1075)

= -1075 -29 +1075

= (-1075+1075) -29

= 0 -29

= -29

Khách vãng lai đã xóa
Xem chi tiết

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

nguyentranvietanh
13 tháng 6 2019 lúc 15:34

em den lam

nguyenquocthanh
Xem chi tiết
PHẠM THỦY TIÊN
27 tháng 9 2021 lúc 19:02

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

Khách vãng lai đã xóa
Linh
Xem chi tiết
Sunny
30 tháng 11 2021 lúc 17:47

\(A=1+3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

Trừ theo vế:

\(\Rightarrow3A-A=\left(3+3^2+3^3+...3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-1\Rightarrow A=\dfrac{3^{101}-1}{2}\)

 

Thanh nga Vũ
Xem chi tiết
Đan Khánh
24 tháng 10 2021 lúc 10:27

undefined

duy Chu
24 tháng 10 2021 lúc 10:33

A =1+3+32 +33 +...+ 3100

3A=3.(30+3+32 +33 +...+ 3100)

3A=31+32 +33 +...+ 3101

3A-A=(31+32 +33 +...+ 3101)-(30+3+32 +33 +...+ 3100)

2A=3101-30

A=(3101-1) :2

vậy A=(3101-1) :2

t.i.c cho mình nha

 

Xem chi tiết
qlamm
13 tháng 12 2021 lúc 23:05

Tham khảo

Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)

3A = 3+32+33+...+3100+31013+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−13101−1

⇒⇒ A = 3101−123101−12

Vậy A = 3101−12

Xem chi tiết
nguyễn thế hùng
15 tháng 12 2021 lúc 13:32

 

A=3 mũ 101-1 phân số2

 

 

 

 

 

Lưu Võ Tâm Như
16 tháng 12 2021 lúc 14:07

\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)