Chứng minh rằng: sinx+tanx>2x với mọi x ∈(0;π/2)
a ) Chứng minh rằng : A = x2 - 2x + 2 > 0 với mọi x thuộc R
b ) Chứng minh rằng x - x2 - 3 < 0 với mọi x thuộc R
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
x²-2x+2=(x²-2x+1)+1=( x-1)²+1
Mà (x-1)²≥0 với mọi x
=> (x-1)²+1>0 với mọi x
=> x²-2x+2>0 với mọi x
Chứng minh rằng
x^2 + 2x + 2 > 0 với mọi x
-x^2 + 4x - 4 < 0 với mọi x
x^2 + 2x + 2 = x^2 + 2.x.1 + 1^2 +1 = (x + 1)^2 + 1 > 0
-x^2 + 4x - 4 = -(x^2 - 2.x.2 + 2^2) = -(x - 2)^2 <= 0
a) ta co ; x^2+ 2x+ 2= (x2+2x+1)+1=(x+1)2+1>0
vi (x+1)2>hoặc=0;1>0suy ra x^2+ 2x+ 2>0
b)ta co -x2+4x-4=-(x2-4x+4)=-(x-2)2<0
a) x^2 + 2x + 2 = ( x^2 + 2x +1 ) + 1 =( x + 1)^2 +1 >0 với mọi x
b) -x^2 + 4x - 4 = -( x^2 -4x + 4 ) = - ( x - 2)^2 ≤ 0 với mọi x
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
chứng minh rằng: x^2-2√2x+2>=0 với mọi x
\(x^2-2\sqrt{2}x+2=\left(x-\sqrt{2}\right)^2\ge0\)
\(x^2-2\sqrt{2}x+2=x^2-2\sqrt{2}x+\left(\sqrt{2}\right)^2=\left(x-\sqrt{2}\right)^2\)
vì \(\left(x-\sqrt{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(x^2-2\sqrt{2}x+2\ge0\forall x\)
Chứng minh rằng: (2x-1)(x-2) >_ 0, với mọi x >_2
Lời giải:
Do $x\geq 2$ nên:
$x-2\geq 0$
$2x-1\geq 2.2-1>0$
Do đó: $(x-2)(2x-1)\geq 0$ (đpcm)
1 Chứng minh rằng
a.2x^28x+20>0 với mọi x
b.x^4-3x^2+5>0 với mọi x
c.-x^2+7x-17<0 với mọi x
d.-2x^2+6x^2-5<0 với mọi x
chứng minh rằng x^4+2x^3-2x^2-10x+20 >0 với mọi giá trị của x
= (x2-x+1)(x2+3x+10)+10 = P
x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0
x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0
vây P>0
Chứng minh rằng x^4 + 2x^3 - 2x^2 - 10x + 20 > 0 với mọi giá trị của x
Chứng minh rằng :
2x^2+4x+3 > 0 với mọi x
2x^2+4x+3=2(x^2+2x+1)+1=2(x+1)^2+1>0 với mọi x
2x2+4x+3=2(x2+2x+3/2)=2(x2+2x+1+1/2)=2(x+1)2+1>0 với mọi x