\(x^2-2\sqrt{2}x+2=\left(x-\sqrt{2}\right)^2\ge0\)
\(x^2-2\sqrt{2}x+2=x^2-2\sqrt{2}x+\left(\sqrt{2}\right)^2=\left(x-\sqrt{2}\right)^2\)
vì \(\left(x-\sqrt{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(x^2-2\sqrt{2}x+2\ge0\forall x\)
\(x^2-2\sqrt{2}x+2=\left(x-\sqrt{2}\right)^2\ge0\)
\(x^2-2\sqrt{2}x+2=x^2-2\sqrt{2}x+\left(\sqrt{2}\right)^2=\left(x-\sqrt{2}\right)^2\)
vì \(\left(x-\sqrt{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(x^2-2\sqrt{2}x+2\ge0\forall x\)
chứng minh rằng với mọi giá trị của biến x ta luôn được
a) x^4 +3x^2+3>0
b) ( x^2+2x+3)*(x^2+2x+4 )+3>0
chứng minh
a. x2-4xy-4y2+3>0 với mọi số thực x và y
b. 2x-2x2-1<0 với mọi số thực x
Chứng minh rằng: \(x^2-2\sqrt{2}x+2>=0\) với mọi x
Chứng minh rằng:
E=4x2+5x+5>0 với mọi x
F=5x2-6x+7>0 với mọi x
G=-x2+5x -6<0 với mọi x
Bài 1 : Chứng minh với mọi số thực x ta luôn có :
x^2 + x+1>0 , 4x - x^2 - 5 < 0
Bài 2: Chứng với mọi số thực x,y ta luôn có :
x^2 + y^2- 2x + 6y >0
-x^2- y^2 + 4x - 4y - 9 < 0
Chứng minh rằng : x2 - x + 1 > 0 với mọi x.
Chứng minh:
a/ \(^{x^2+3x+5}\) > 0 với mọi x
b/\(4x^2+5x+7\) > 0 với mọi x
c/\(6x-9x^2-4\) < 0 với mọi x
d/\(x-x^2-1\) < 0 với mọi x
e/\(2x-3x^2-5\) < 0 với mọi x
f/\(4x-5x^2-9\) < 0 với mọi x
Chứng minh rằng :
x2-2x+3 luôn luôn dương với mọi giá trị x.