Ta có:\(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\left(1-\dfrac{1}{4}\right)=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\forall x\)
Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
Vậy....
\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của x ta có:
\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
=> đpcm