Z = \(\dfrac{3a+4}{a+2}\)
tìm các số nguyên a để Z là số nguyên
Cho A=3x+2/x-3 và B=x2+3x-7/x+3
a) Tính A khi x=1;x=2;x=5/2
b) Tìm x E Z để A là số nguyên
c) Tìm x E Z để B là số nguyên
d) Tìm x E Z để A và B cùng là số nguyên
tìm giá trị x để biểu thức nguyên
D=2x-3/x+5
E=x^2-5/x-3
Tìm x để
a) A=\(\dfrac{x^2+3x-1}{x+2}\) có giá trị là số nguyên (x ϵ Z)
b) B=\(\dfrac{x^2+x+3}{x+1}\) có giá trị là số nguyên (x ϵ Z)
a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2
=>-3 chia hết cho x+2
=>x+2 thuộc {1;-1;3;-3}
=>x thuộc {-1;-3;1;-5}
b: B nguyên khi x^2+x+3 chia hết cho x+1
=>3 chia hết cho x+1
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
tìm a thuộc Z để các phân số sau là số nguyên :
a)3a-1/5
b)7a-6/3
c)1-3a/1+a
1) Cho a, b, c là hằng số và a+b+c=2018.Tính giá trị của các biểu thức sau:
A=\(ax^3y^3+bx^3y+cxy^2\) tại x=1 ,y=1
B=\(ax^2y^2-bx^4y+cxy^6\) tại x=1, y=-1
2) Biết x+y-2=0. Tính giá trị của các biểu thức :
M=\(x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
N=\(x^3-2x^2-xy^2+2xy+2x-2\)
P=\(x^4+2x^3y-2x^3+x^2y^3-2x^2y-x\left(x+y\right)+2x+3\)
3) Có A=\(\dfrac{3a+2}{x-3}\) và B=\(\dfrac{x^2+3x-7}{x+3}\)
a) Tính A khi x=1,x=2,x=\(\dfrac{5}{2}\)
b) Tìm x \(\in\) Z để A số nguyên.
c) Tìm x \(\in\) Z để B số nguyên.
d) Tìm x \(\in\) Z để A và B cùng là số nguyên.
4) Cho C=\(\dfrac{2x-1}{x+2}\) và D=\(\dfrac{x^2-2x+1}{x+1}\)
a) Tìm x\(\in\)Z để C là số nguyên.
b) Tìm x\(\in\)Z để D là số nguyên.
c) Tìm x\(\in\)Z để C và D cùng là số nguyên.
CÁC BẠN LÀM NGAY GIÚP MÌNH VỚI MÌNH RẤT RẤT VỘI
1. Tìm tất cả các phân số = phân số 34/51 và có mẫu là số tự nhiên ngỏ hơn 16
2. Cho A= 5/n-4
a, Tìm n thuộc Z để A là phân số
b, tìm n thuộc z để a là số nguyên
3. Cho B=x-2/x+51
a, tìm x thuộc z để b là phân số
b, tìm x thuộc z để b là số nguyên
Cho M = (√a + 6)/(√a + 1)= (√a +1 + 5)/(√a + 1)= 1 + 5/(√a + 1) a)Tìm a thuộc Z để M thuộc Z b) cmr với a = 4/9 thì là số nguyên c) Tìm các số hữu tỉ a để M là số nguyên
a: Để M là số nguyên thì 5 chia hết cho căn a+1
=>căn a+1 thuộc {1;5}
=>a thuộc {0;4}
b: Khi a=4/9 thì \(M=1+\dfrac{5}{\dfrac{2}{3}+1}=1+5:\dfrac{5}{3}=1+3=4\)
=>M là số nguyên
c: \(\sqrt{a}+1>=1\)
=>\(\dfrac{5}{\sqrt{a}+1}< =5\)
=>M<=6
\(1< =\dfrac{5}{\sqrt{a}+1}< =5\)
=>2<=M<=6
M=2 khi \(\dfrac{5}{\sqrt{a}+1}+1=2\)
=>\(\dfrac{5}{\sqrt{a}+1}=1\)
=>căn a+1=5
=>căn a=4
=>a=16
M=3 khi \(\dfrac{5}{\sqrt{a}+1}=2\)
=>căn a+1=5/2
=>căn a=3/2
=>a=9/4
M=4 thì \(\dfrac{5}{\sqrt{a}+1}=3\)
=>căn a+1=5/3
=>căn a=2/3
=>a=4/9
\(M=5\Leftrightarrow\dfrac{5}{\sqrt{a}+1}=4\)
=>căn a+1=5/4
=>căn a=1/4
=>a=1/16
Tìm a thuộc Z để:
P=2a+8/5-a/5+3a+7/5 là số nguyên
Cho biểu thức:
M= (\(\dfrac{2+a}{2-a}\)- \(\dfrac{4a^2}{a^2-4}\)- \(\dfrac{2-a}{2+a}\))
a) Rút gọn M
b) Tính giá trị của M khi |a+1|=3
c) Tìm a ϵ Z để M là số nguyên chia hết cho 4
Lời giải:
a. ĐKXĐ: $a\neq \pm 2$
\(M=\frac{(2+a)^2}{(2-a)(2+a)}+\frac{4a^2}{(2-a)(2+a)}-\frac{(2-a)^2}{(2+a)(2-a)}\)
\(=\frac{(2+a)^2+4a^2-(2-a)^2}{(2-a)(2+a)}=\frac{4a(a+2)}{(2-a)(2+a)}=\frac{4a}{2-a}\)
b.
$|a+1|=3\Rightarrow a+1=\pm 3\Rightarrow a=-2$ hoặc $a=-4$
Vì $a\neq \pm 2$ nên $a=-4$
Khi đó: $M=\frac{4a}{2-a}=\frac{4(-4)}{2-(-4)}=\frac{-8}{3}$
c.
Trước tiên cần tìm $a$ để $M$ nguyên đã.
$M=\frac{4a}{2-a}=\frac{8-4(2-a)}{2-a}=\frac{8}{2-a}-4$ nguyên khi $\frac{8}{2-a}$ nguyên
$\Rightarrow 2-a\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$
$\Rightarrow a\in\left\{1; 3; 0; 4; -2; 6; 10; -6\right\}$.
Thử lại thấy $a\in\left\{1; 3; 0; 4\right\}$ thỏa mãn $M$ là số nguyên chia hết cho $4$
Cho A = \(\dfrac{3n+1}{2n+3}\) . Tìm n ∈ Z để A là số nguyên
\(\dfrac{help}{me}\)
A = \(\dfrac{3n+1}{2n+3}\) (n \(\ne\) - \(\dfrac{3}{2}\))
A \(\in\) Z ⇔ 3n + 1 ⋮ 2n + 3
6n + 2 ⋮ 2n + 3
6n + 9 - 7 ⋮ 2n + 3
3.(2n + 3) - 7 ⋮ 2n + 3
7 ⋮ 2n + 3 ⇒ 2n + 3 \(\in\) Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
2n+3 | -7 | -1 | 1 | 7 |
n | -5 | -2 | -1 | 2 |
Vậy các số nguyên n thỏa mãn đề bài là:
n \(\in\) { -5; -2; -1; 2}
\(A=\dfrac{3n+1}{2n+3}\inℤ\) \(\left(n\ne-\dfrac{3}{2}\right)\)
\(\Rightarrow3n+1⋮2n+3\)
\(\Rightarrow2\left(3n+1\right)-3\left(2n+3\right)⋮2n+3\)
\(\Rightarrow6n+2-6n-9⋮2n+3\)
\(\Rightarrow-7⋮2n+3\)
\(\Rightarrow2n+3\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow n\in\left\{-2;-1;-5;2\right\}\)