Cho tam giác ABC, M là trung điểm của BC. D thuộc tia đối MA, MD=MA
a) CM AC=BD
b)CM AC//BD
c) I thuộc cạnh AC, K thuộc cạnh BD sao cho AI=DK. CM 3 điểm I,M,K thẳng hàng
cho tam giác ABC có AB = AC. M là trung điểm BC.
a, tam giác AMB = tam giác AMC.
b, Trên tia đối của tia MA lấy D sao cho MD = MA. CMR: AC song song BD.
c, Gọi I là trung điểm thuộc AC, K thuộc BD sao cho AI = DK. CMR I,M,K thẳng hàng
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
c: Xét ΔIAM và ΔKDM có
IA=KD
\(\widehat{IAM}=\widehat{KDM}\)
AM=DM
Do đó: ΔIAM=ΔKDM
=>\(\widehat{IMA}=\widehat{KMD}\)
mà \(\widehat{IMA}+\widehat{IMD}=180^0\)(hai góc kề bù)
nên \(\widehat{KMD}+\widehat{IMD}=180^0\)
=>K,M,I thẳng hàng
Cho tam giác ABC lấy M là trung điểm chủa cạnh BC. Trên tia dối của tia MA lấy điểm D sao cho A=Md
a)CM tam gicas AMB= tam giácDMC
b) CM AC//BD
c) Kẻ AH vuong góc Bc, DK vuông góc BC ( H,K thuộc BC). CM BK=CH
d) Gọi I là trung điểm của AC, vẽ điểm E sao cho I là trung điểm của BE. CM C là trung điểm của DE
ai giúp mik vs đúng mik chooooo
a) Xét \(\Delta AMB\)và \(\Delta DMC\)có:
MA = MD (gt)
\(\widehat{AMB}=\widehat{DMC}\)(2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
b) Xét \(\Delta AMC\)và \(\Delta DMB\)có:
MA = MD (gt)
\(\widehat{AMC}=\widehat{DMB}\)(2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{ACM}=\widehat{DBM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AC//BD\)
c) Ta có: \(\Delta AMC=\Delta DMB\)(theo b)
=> AC = BD (2 cạnh tương ứng)
Xét \(\Delta DBK\)và \(\Delta ACH\)có:
\(\widehat{BKD}=\widehat{CHA}=90^o\left(gt\right)\)
BD = AC (cmt)
\(\widehat{DBK}=\widehat{ACM}\)(cm b)
\(\Rightarrow\Delta DBK=\Delta ACH\left(CH-GN\right)\)
=> BK = CH (2 cạnh tương ứng)
d) Ta có: \(\Delta AMB=\Delta DMC\)(theo a)
=> AB = CD (2 cạnh tương ứng) (1)
\(\widehat{ABM}=\widehat{DCM}\)(2 góc tương ứng)
Mà 2 góc ở vị trí so le trong => AB // CD (2)
Xét \(\Delta ABI\)và \(\Delta CEI\)có:
AI = CI (I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CIE}\)(2 góc đối đỉnh)
BI = EI (I là trung điểm của BE)
\(\Rightarrow\Delta ABI=\Delta CEI\left(c.g.c\right)\)
\(\Rightarrow AB=CE\)(2 cạnh tương ứng) (3)
\(\widehat{ABI}=\widehat{CEI}\)(2 góc tương ứng)(4)
Mà 2 góc này ở vị trí so le trong
=> AB // CE
Từ (1) và (3) => CD = CE (5)
Từ (2) và (4) => C,D,E thẳng hàng (6)
Từ (5) và (6) => C là trung điểm của DE
vẽ hình hộ mik vs ạ mik rối cả hình nữa
Cho tam giác ABC lấy M là trung điểm chủa cạnh BC. Trên tia dối của tia MA lấy điểm D sao cho A=Md
a)CM tam gicas AMB= tam giácDMC
b) CM AC//BD
c) Kẻ AH vuong góc Bc, DK vuông góc BC ( H,K thuộc BC). CM BK=CH
d) Gọi I là trung điểm của AC, vẽ điểm E sao cho I là trung điểm của BE. CM C là trung điểm của DE
a) Xét ΔAMB và ΔAMC có
AB=AC(gt)
MB=MC(M là trung điểm của BC)
AM chung
Do đó: ΔAMB=ΔAMC(c-c-c)
b) Sửa đề: AM=MD
Xét ΔAMC và ΔDMB có
AM=DM(gt)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(c-g-c)
⇒AC=DB(Hai cạnh tương ứng)
c) Ta có: ΔAMC=ΔDMB(cmt)
nên \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)
mà \(\widehat{ACM}\) và \(\widehat{DBM}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
Cho tam giác ABC. M là trung điểm BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a) CM: AB song song với CD và AB=CD
b) Kẻ MH vuông góc với Ab (H thuộc AB). CM: MH vuông góc với CD
c) Trên tia AC lấy điểm I, trên tia BD lấy điểm K sao cho AI=KD. CM: I, M, K thẳng hàng
d) Tìm điều kiện của tam giác ABC để góc CDB = 90 độ
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét ΔMBD và ΔMCA có
MB=MC
\(\widehat{BMD}=\widehat{CMA}\)
MD=MA
Do đó: ΔMBD=ΔMCA
=>\(\widehat{MBD}=\widehat{MCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//AC
c: Xét ΔDKB vuông tại K và ΔAHC vuông tại H có
DB=AC
\(\widehat{DBK}=\widehat{ACH}\)
Do đó: ΔDKB=ΔAHC
=>BK=CH
d: Xét tứ giác ABCE có
I là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//CE và AB=CE
Ta có; ΔMAB=ΔMDC
=>AB=DC
Ta có: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
Ta có: AB//DC
AB//CE
DC,CE có điểm chung là C
Do đó: D,C,E thẳng hàng
ta có: AB=CD
AB=CE
Do đó: DC=CE
mà D,C,E thẳng hàng
nên C là trung điểm của DE
Bài 11: Cho △ABC, lấy M là trung điểm cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD. Chứng minh rằng:
a) △AMB = △DMC
b) AC // BD
c) Kẻ AH ⏊ BC, DK⏊ BC( H,K thuộc BC). Chứng minh BK = CH
d) Gọi I là trung điểm của AC, vẽ điểm E sao cho I là trung điểm của BE. Chứng minh C là trung điểm DE.
Mong mn làm giúp mik bài này mik cảm ơn!
Bài 11:
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
Cho tam giác ABC có cạnh AB=AC,M là trung điểm của BC
a) Cm: tg ABM= tg ACM.
b) Trên tia đối của tia M
A lấy điểm D sao cho MD=MA.CM AC=BD
d) Trên nữa mp là AC ko chứa điểm B, vẽ Ax//BC lấy điểm I thuộc Ax sao cho AI=BC.CM 2 điểm D,C,I thẳng hàng
Cho tam giác ABC có AB=BC M là trung điểm BC A/CM tam giác ABM=tam giác ACM B/ Trên tia đối của tia MA lấy điểm D sao cho MD= MA.CM AC= BD C/ CM AB// CD D/ Trên nửa mặt phẳng bờ là AC không chứa điểm B ,vẽ tia Ax //BC ,lấy I thuộc Ax dao cho lAI = BC.CM D, C, I thẳng hàng
a: Xét ΔABM và ΔACM có
AB=AC
AM chug
BM=CM
Do đó: ΔABM=ΔACM
b:
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét ΔAMC vuông tại M và ΔBMD vuông tại M có
MC=MD
MA=MB
Do đó: ΔAMC=ΔBMD
Suy ra: AC=BD
c: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của CB
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
d: Xét tứ giác ABCI có
AI//BC
AI=BC
Do đó: ABCI là hình bình hành
Suy ra: CI//AB
mà CD//AB
và CI,CD có điểm chung là C
nên C,I,D thẳng hàng