Tính B=\(x^3-3x+1077\)
với x=\(\sqrt[3]{16-\sqrt{255}}+\dfrac{1}{\sqrt[3]{16-\sqrt{255}}}\)
bài 1
a) \(\sqrt{2X+1}\)
b)\(\sqrt{x^2-4}\)
c) \(\dfrac{3}{\sqrt{3X+5}}\)
d) \(\sqrt{X-3}-\sqrt{10-x}\)
e) \(\sqrt{x+4}+\dfrac{2-X}{x^2-16}\)
a) ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
b) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
c) ĐKXĐ: \(x>-\dfrac{5}{3}\)
d) ĐKXĐ: \(3\le x\le10\)
e) ĐKXĐ: \(\left\{{}\begin{matrix}x>-4\\x\ne4\end{matrix}\right.\)
a) \(\sqrt{x-3}-\sqrt{10-x}\)
b) \(\sqrt{x+4}+\dfrac{2-X}{x^2-16}\)
c) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-4}}\)
d) \(\dfrac{\sqrt{2x-1}}{3x+2}\)
e) \(\dfrac{-2}{\sqrt{x^2+2x+2}}\)
a) ĐKXĐ: \(3\le x\le10\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>-4\\x\ne4\end{matrix}\right.\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x\ne4\end{matrix}\right.\)
d) ĐKXĐ: \(x\ge\dfrac{1}{2}\)
e) ĐKXĐ: \(x\in R\)
Cho biểu thức: \(A=\dfrac{\sqrt{x}-1}{2\sqrt{x}+1}-\dfrac{3}{1-2\sqrt{x}}-\dfrac{4\sqrt{x}+4}{4x-1}\) và \(B=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)với x > 0 , x = 1/4
a. TÍnh giá trị của biểu thức B biết \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
b. Rút gọn biểu thức A
a: Ta có: \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
\(=4-2\sqrt{3}+2\sqrt{3}\)
=4
Thay x=4 vào B, ta được:
\(B=\dfrac{2-4}{2}=-1\)
(2 điểm) Cho hai biểu thức $A=\dfrac{\sqrt{x}}{\sqrt{x}+3}$ và $B=\dfrac{2 \sqrt{x}}{\sqrt{x}-3}-\dfrac{3 x+9}{x-9}$ với $x \geq 0, x \neq 9$.
1) Tính giá trị của biểu thức $A$ khi $x=16$.
2) Chứng minh $A+B=\dfrac{3}{\sqrt{x}+3}$.
1, Thay x = 16 vào ta được \(A=\dfrac{4}{4+3}=\dfrac{4}{7}\)
2, \(A+B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{-x+6\sqrt{x}-9}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{3}{\sqrt{x}+3}\)
Ta có đpcm
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy...
b)Đk: \(x\ge-1\)
Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)
\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)
Vậy...
\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)
b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)
a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)
✱ giải pt:
a.\(\sqrt{x^2-4x+4}\)\(=5\)
⇔\(\sqrt{\left(x-2\right)^2}=5\)
⇒\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy....
b.\(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
⇔ \(4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
⇔ \(4\sqrt{x+1}=16\)
⇔ \(\sqrt{x+1}=16\)
⇒ \(x+1=256\)
⇔ \(x=255\)
vậy.....
RÚT GỌN BIỂU THỨC:
16) \(A = \dfrac{\sqrt{x}}{\sqrt{x} + 3} + \dfrac{2\sqrt{x}}{\sqrt{x} - 3} - \dfrac{3x + 9}{x - 9}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) (ĐK: \(x\ge0;x\ne9\))
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{\left(\sqrt{x}\right)^2-3^2}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{2x+6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{3}{\sqrt{x}+3}\)
Giải phương trình:
a)\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+2\sqrt{15}}\)
b)\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
c) \(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
d) \(\sqrt{x^2-6x+9}+x=11\)
e) \(\sqrt{3x^2-4x+3}=1-2x\)
f) \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
g) \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
1/ Tính: \(\sqrt[3]{54}-\sqrt[3]{16}\)
2/ so sánh các cặp số sau
a) \(3\sqrt{2}\) và \(2\sqrt{3}\)
b) 4.\(\sqrt[3]{5}\) và 5.\(\sqrt[3]{4}\)
3/ cho biểu thức A= \(_{\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)}\)\(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a) tìm điều kiện x để A có nghĩa
b) Rút gọn A
2/
a) Ta có:
\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)
Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b) Ta có:
\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)
\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)
Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)
3/
a)ĐKXĐ: \(x\ne1;x\ge0\)
b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)
\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)
\(A=1^2-\left(\sqrt{x}\right)^2\)
\(A=1-x\)
1/ \(\sqrt[3]{54}-\sqrt[3]{16}\)
\(=\sqrt[3]{3^3\cdot2}-\sqrt[3]{2^3\cdot2}\)
\(=3\sqrt[2]{3}-2\sqrt[3]{2}\)
\(=\left(3-2\right)\sqrt[3]{2}\)
\(=\sqrt[3]{2}\)
Tìm x, biết :a) \(\dfrac{x-2}{\sqrt{3x-2}+2}=9\)
b) \(\sqrt{5x-2}=9\)
c) \(\dfrac{2x-16}{\sqrt{x+1}-3}=5\)
a: ĐKXĐ: x>=2/3
\(\dfrac{x-2}{\sqrt{3x-2}+2}=9\)
=>\(x-2=9\sqrt{3x-2}+18\)
=>\(9\sqrt{3x-2}=x-2-18=x-20\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}x>=20\\81\left(3x-2\right)=x^2-40x+400\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=20\\x^2-40x+400-243x+162=0\end{matrix}\right.\)
=>x>=20 và x^2-283x+562=0
=>x=281(nhận) hoặc x=2(loại)
b: ĐKXĐ: x>=2/5
\(\sqrt{5x-2}=9\)
=>5x-2=81
=>5x=83
=>x=83/5
c: ĐKXĐ: x>=-1; x<>8
\(\dfrac{2x-16}{\sqrt{x+1}-3}=5\)
=>\(2x-16=5\sqrt{x+1}-15\)
=>\(\sqrt{25x+25}=2x-16+15=2x-1\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-4x+1=25x+25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-29x-24=0\end{matrix}\right.\)
=>x=8(nhận) hoặc x=-3/4(loại)