so sánh (1/10)^15 và (3/10)^20
so sánh (1/10)^15 và (3/10)^20
So sánh:
\(\left(\dfrac{1}{10}\right)^{15}\)và \(\left(\dfrac{3}{10}\right)^{20}\)
Ta có:
\(\left(\dfrac{1}{10}\right)^{15}=\left(\left(\dfrac{1}{10}\right)^3\right)^5=\left(\dfrac{1}{1000}\right)^5\)
\(\left(\dfrac{3}{10}\right)^{20}=\left(\left(\dfrac{3}{10}\right)^4\right)^5=\left(\dfrac{81}{10000}\right)^5\)
Ta có: \(\left(\dfrac{1}{10}\right)^{15}=\left(\dfrac{1}{10}^3\right)^5=\left(\dfrac{1}{1000}\right)^5\)
\(\left(\dfrac{3}{10}\right)^{20}=\left(\dfrac{3}{10}^4\right)^5=\left(\dfrac{3}{10000}\right)^5\)
Vì \(\dfrac{1}{1000}>\dfrac{3}{10000}\) nên \(\left(\dfrac{1}{10}\right)^{15}>\left(\dfrac{3}{10}\right)^{20}\)
So sánh:
A=15^10+2/15^10-1 và B=15^10So sánh:
A=15^10+2/15^10-1 và B=15^10/15^10-3
Trl:
Đây ko phải là bài lp 5 bn nhé.
Hok tốt!
trời đất toán lớp 5 khó bằng toán 6 lun á
đây ko phải lop5
So sánh A và B : \(A=\dfrac{20^{10}+1}{20^{10}-1}\) và \(B=\dfrac{20^{10}-1}{20^{10}-3}\)
Giải:
Ta có:
A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-1<2/2010-3 nên A<B
Chúc bạn học tốt!
so sánh:
A= \(\dfrac{20^{10}+1}{20^{10}-1}\)và B=\(\dfrac{20^{10}-1}{20^{10}-3}\)
Lời giải:
$A=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}$
$B=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}$
Vì $20^{10}-1> 20^{10}-3$
$\Rightarrow \frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}$
$\Rightarrow 1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}$
$\Rightarrow A< B$
so sánh
A= 20^10+1/ 20^10-1 và B= 20^10-1/ 20^10-3
\(A=\frac{2010+1}{2010-1}\)
\(A=1+\frac{2}{2010-1}>1\)
\(B=\frac{2010-1}{2010-3}\)
\(B=1-\frac{2}{2010-3}<1\)
Từ đó A > B
so sánh
A = 20^10+1 / 20^10-1 và B = 20^10 -1 / 20^10 -3
Ta thấy : A =\(\frac{20^{10}+1}{20^{10}-1}>1\)
Ta có : A=\(\frac{20^{10}+1}{20^{10}-1}>\frac{20^{10}+1-2}{20^{10}-1-2}=\frac{20^{10}-1}{20^{10}-3}=B\)
Vậy A > B
Theo đề ta có:
A= 20^10+1/20^10-1 (1)
Từ (1) ta có: 20^10+1/20^10-1>20^10+1-2/20^10-1-2=20^10-1/20^10-3=B.
Vậy A>B
so sánh
A=20^10+1/20^10-1 và B=20^10-1/20^10-3
Ta thấy:\(A=\frac{20^{10}+1}{20^{10}-1}>1\)
Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}>\frac{20^{10}+1-2}{20^{10}-1-2}=\frac{20^{10}-1}{20^{10}-3}=B\)
Vậy \(A>B\)
so sánh
A=20^10+1/20^10-1 và B=20^10-1/20^10-3
Ta có:
\(A=\frac{20^{10}+1}{20^{10}-1}\)
\(=\frac{20^{10}-1+2}{20^{10}-1}\)
\(=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}\)
\(=\frac{20^{10}-3+2}{20^{10}-3}\)
\(=1+\frac{2}{20^{10}-3}\)
Ta lại có:
\(20^{10}-1>20^{10}-3\)
\(\Rightarrow\)\(\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}\)
\(\Rightarrow\)\(1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}\)
Vậy ta kết luận A < B