(x+1)2=4
a,1/3 .(x-2/5)=3/4 b, 7/3:(x-2/3)=4/5 c,1/3.(x-2/5)=4/5 d, 2/3.(x-1/2)-1/4.(x-2/5)=7/3 e,3/7 .(x-2/3)+1/2=5/4.(x-2) f,1/2.(x-3)+1/3.(x-4)+1/4.(x-5)=1/5 g,[2/3.(x-1/2)-4/5]:(x-1/3)=21/5 h, {x-[1/2.(x-3)+11/5]}:(x-1/2)=3/5 i,x.(x-2/5)-(x+2).x+11/4=4/3
a: =>x-2/5=3/4:1/3=3/4*3=9/4
=>x=9/4+2/5=45/20+8/20=53/20
b: =>x-2/3=7/3:4/5=7/3*5/4=35/12
=>x=35/12+2/3=43/12
c: 1/3(x-2/5)=4/5
=>x-2/5=4/5*3=12/5
=>x=12/5+2/5=14/5
d: =>2/3x-1/3-1/4x+1/10=7/3
=>5/12x-7/30=7/3
=>5/12x=7/3+7/30=77/30
=>x=77/30:5/12=154/25
e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)
=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)
=>x=19/7:23/28=76/23
f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5
=>13/12x=1/5+3/2+4/3+5/4=257/60
=>x=257/65
i: =>x^2-2/5x-x^2-2x+11/4=4/3
=>-12/5x=4/3-11/4=-17/12
=>x=17/12:12/5=85/144
1) (3x-2)/3-2=(4x+1)/42) (x-3)/4+(2x-1)/3=(2-x)/63) 1/2 (x+1)+1/4 (x+3)=3-1/3 (x+2)4) (x+4)/5-x+4=x/3-(x-2)/25) (4-5x)/6=2(-x+1)/2 6) (-(x-3))/2-2=5(x+2)/4 7)2(2x+1)/5-(6+x)/3=(5-4x)/158) (7-3x)/2-(5+x)/5=1 9)(x-1)/2+3(x+1)/8=(11-5x)/310)(3+5x)/5-3=(9x-3)/4
1) (3x-2)/3-2=(4x+1)/4
2) (x-3)/4+(2x-1)/3=(2-x)/6
3) 1/2 (x+1)+1/4 (x+3)=3-1/3 (x+2)
4) (x+4)/5-x+4=x/3-(x-2)/2
5) (4-5x)/6=2(-x+1)/2
6) (-(x-3))/2-2=5(x+2)/4
7)2(2x+1)/5-(6+x)/3=(5-4x)/15
8) (7-3x)/2-(5+x)/5=1
9)(x-1)/2+3(x+1)/8=(11-5x)/3
10)(3+5x)/5-3=(9x-3)/4
1:
\(\Leftrightarrow\left(x^2+5x+6\right)\left(x^2+5x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x\right)^2+10\left(x^2+5x\right)=0\)
\(\Leftrightarrow x^2+5x=0\)
=>x=0 hoặc x=-5
3: \(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
Giải phương trình về dạng ax + b = 0
1. (3x - 2)/3 - 2 = (4x + 1)/4
2. (x - 3)/4 + ( 2x - 1 )/3 = (2 - x)/6
3. 1/2 (x + 1) + 1/4(x + 3) = 3 - 1/3 (x + 2)
4 (x + 4)/5 - x + 4 = x/3 - (x - 2)/2
5. (4 - 5x)/6 = 2 (-x + 1)/2
Giải phương trình về dạng ax + b = 0
1. (3x - 2)/3 - 2 = (4x + 1)/4
2. (x - 3)/4 + ( 2x - 1 )/3 = (2 - x)/6
3. 1/2 (x + 1) + 1/4(x + 3) = 3 - 1/3 (x + 2)
4 (x + 4)/5 - x + 4 = x/3 - (x - 2)/2
5. (4 - 5x)/6 = 2 (-x + 1)/2
Giải phương trình:
a)(x+1/x-2)^2+x+1/x-4-3(2x-4/x-4)^2=0
b)4/x^2(x+1)^2-4(1/x-1/x+1)+1=0
`#040911`
a,
\(\dfrac{1}{2}\cdot\left(x-4\right)-\dfrac{1}{4}\cdot\left(x-\dfrac{4}{3}\right)=2\cdot\left(x-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}x-2-\dfrac{1}{4}x+\dfrac{1}{3}=2x-1\\\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{4}x-2x\right)=2-\dfrac{1}{3}-1\\ \Rightarrow-\dfrac{7}{4}x=\dfrac{2}{3}\\ \Rightarrow x=\dfrac{2}{3}\div\left(-\dfrac{7}{4}\right)\\ \Rightarrow x=-\dfrac{8}{21}\)
Vậy, \(x=-\dfrac{8}{21}\)
b,
\(\dfrac{3}{4}-\left(x-\dfrac{1}{2}\right)^2=-\dfrac{11}{2}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{3}{4}-\left(-\dfrac{11}{2}\right)\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{25}{4}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\left(\pm\dfrac{5}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}+\dfrac{1}{2}\\x=-\dfrac{5}{2}+\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy, \(x\in\left\{-2;3\right\}\)
c,
\(\dfrac{3}{16}+1\dfrac{1}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\\ \Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\div\dfrac{17}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{17}\)
Bạn xem lại đề có sai kh nhỉ?
c) \(\dfrac{3}{16}+\dfrac{1}{\dfrac{1}{16}}\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}:16\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{256}=\left(\dfrac{3}{16}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{3}{16}\\x-\dfrac{2}{3}=-\dfrac{3}{16}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{16}+\dfrac{2}{3}\\x=-\dfrac{3}{16}+\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{41}{48}\\x=\dfrac{23}{48}\end{matrix}\right.\)
B1:tìm x biết a, (-2+x^2)(x^2-2)(x^2-2)(x^2-2)(x^2-2)=1 b, (2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4) c,(8x-3)(3x+2)-(4x+7)(x+4)=(4x+1)(5x-1) d, 2x^2+3(x-1)(x+1)=5x(x+1) e, (8-5x)(x+2)+4(x-2)(x+1)=(2+x)(2-x) f, 4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
Chúng ta sẽ giải từng phương trình một:
a. Đặt , ta có:
8(x+1/x)^2+4(x^2+1/x^2)^2-4(x^2+1/x^2)(x+1/x)^2=(x+4)^2
ĐKXĐ:x≠0
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2\) \(-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
⇔\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)= \left(x+4\right)^2\)
⇔\(8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)
⇔\(\left(x+4\right)^2=16=4^2=\left(-4\right)^2\)
⇔\(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)
Vậy \(S=\left\{-8\right\}\)