Cho A = 1 + 21 + 22 + ... + 22015, viết A + 1 dưới dạng luỹ thừa của 8.
cho A=1+21+22+23+...+22015
viết A dưới dạng lũy thừa của 8.
Ta có: \(A=1+2+2^2+...+2^{2015}\)
\(2A=2\cdot\left(1+2+2^2+...+2^{2015}\right)\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=2+2^2+...+2^{2016}-1-2-2^2-...-2^{2015}\)
\(A=2^{2016}-1\)
A không thể biết dưới dạng lũy thừa của 8 được
1 Chứng tỏ rằng
a) A + 1 là 1 luỹ thừa của 2 Biết A = 1 + 2 + 22 + ... + 280
b) 2B - 1 là 1 luỹ thừa của 3 Biết B = 1 + 3 + 32 + ... + 399
2 Tìm số tự nhiên x biết
a) 2x . ( 1 + 2 + 22 + 23 + ... = 22015 ) + 1 = 22016
b) 8x - 1 = 1 + 2 + 22 + 23 + ... + 22015
( giải chi tiết hộ mình với ạ Cảm ơn <3 )
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
Cho A = 1 + 2 + 2^2 + .... + 2^100
Viết A + 1 dưới dạng luỹ thừa
A=1+2+2^2+....+2^100
2A= 2+2^2+2^3+....+2^101
A=2A-A=(2+2^2+2^3+...+2^101)-(1+2+2^2+...+2^100)
=>A=2^101-1
=>A+1=2^101
Vậy A+1 là một lũy thừa của 2.
A = 1 + 2 + 2^2 + ... + 2^100
2A = 2 + 2^2 + 2^3 + ... + 2^101
2A - A = ( 2+ 2^2+ 2^3 + ... + 2^101 ) - ( 1+ 2 + 2^2 + ... + 2^100)
A = 2^101 - 1
A + 1 = 2^101
viết kết quả phép tính sau dưới dạng một luỹ thừa: 12^9 . 12 là: A. 1^8 B. 12^7 C. 12^8 D.12^10
Cho A=5^0+5^1+5^2+...+5^98+5^99. Viết 4A+1 dưới dạng 1 luỹ thừa
A=50+51+...+599
=>5A=5+52+53+...+5100
=>5A-A=4A=(5+52+...+5100)-(50+51+...+599)=5100-1
=>4A+1=5100
Viết các tích sau dưới dạng luỹ thừa của một số
A=8^2.32^4
B=27^3.9^4.243
\(A=8^2\cdot32^4\\ =2^6\cdot2^{20}\\ =2^{26}\\ B=27^3\cdot9^4\cdot243\\ =3^9\cdot3^{12}\cdot3^5\\ =3^{26}\)
`A=8^2*32^4=(2^3)^2*(2^5)^4=2^6*2^20=2^26`
`B=27^3*9^4*243=(3^3)^3*(3^2)^4*3^5=3^9*3^8*3^5=3^22`
\(A=8^2.32^4\)
\(=\left(2^3\right)^2.\left(2^5\right)^4\)
\(=2^6.2^{20}\)
\(=2^{26}\)
\(B=27^3.9^4.243\)
\(=\left(3^3\right)^3.\left(3^2\right)^4.3^5\)
\(=3^9.3^8.3^5\)
\(=3^{22}\)
a,cho A=1+2+2^2+2^3+....+2^100.hãy viết A+1 dưới dạng một luỹ thừa
b,cho B=3+3^2+3^3+...+3^2005.chứng minh rằng 2B+3 là luỹ thùa của 3
a, \(A=1+2+2^2+2^3+...+2^{100}\)
=> \(2A=2+2^2+2^3+2^4+...+2^{101}\)
=> \(A=2A-A=2^{101}-1\)
=> \(A+1=2^{101}\)
b, \(B=3+3^2+3^3+...+3^{2005}\)
\(3A=3^2+3^3+3^4+....+3^{2006}\)
=> \(2A=3A-A=3^{2006}-3\)
=> \(2A+3=3^{2006}\)là lũy thừa của 3
=> Đpcm
a) Ta có: \(A=1+2+2^2+2^3+.....+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+........+2^{101}\)
Lấy 2A-A ta có:
\(2A-A=\left(2+2^2+2^3+2^4+.....+2^{101}\right)\)\(-\left(1+2+2^2+2^3+.......+2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
\(\Rightarrow A+1=2^{101}-1+1\)
\(\Rightarrow A+1=2^{101}\)
b) Ta có: \(B=3+3^2+3^3+.....+3^{2005}\)
\(\Rightarrow3B=3^2+3^3+3^4+.....+3^{2006}\)
\(\Rightarrow3B-B=\left(3^2+3^3+3^4+....+3^{2006}\right)\)\(-\left(3+3^2+3^3+......+3^{2005}\right)\)
\(\Rightarrow2B=3^{2006}-3\)
\(\Rightarrow2B+3=3^{2006}-3+3\)
\(\Rightarrow2B+3=3^{2006}\)
Vậy 2B+3 là lũy thừa của 3 ĐPCM
cho A = 500 + 51+52 + ......+5100
hãy viết biểu thức 4xA +1 dưới dạng luỹ thừa và cho biết chữ số tận cùng của luỹ thừa đó
Cho x thuộc Q và x # 0.Viết x10 dưới dạng:
a)Tích cùa 2 luỹ thừa trong đó có 1 thừa số là x7
b)Luỹ thừa của x2
c)Thương của 2 luỹ thừa trong đó số bị chia là x12