Câu 1: 3x(x2+2y)2-12xy(x2+y)
Câu 2: u2v2(u+v)2-(u2v+uv2)2
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
b: \(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
d: \(=9x^2+6x+1-9x^2+6x-1=12x\)
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
e: \(=x^3+1-x^3+1=2\)
Lời giải:
a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$
$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.
$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$
$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$
d.
$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$
$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$
$=-x^2y+4x^2-2xy^2-10x$
$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$
CÂU 1:thực hiện phép tinh.
2x(3x^2-7x+2)
(x-2)(3x^2+2x+4)
(3x^2y^2+6x^2y^3-12xy)÷3xy
X^2/x-2+4-4x/x-2
\(2x\left(3x^2-7x+2\right)\)
\(=6x^3-14x^2+4x\)
\(\left(x-2\right)\left(3x^2+2x+4\right)\)
\(=3x^3+\left(-4x^2\right)+\left(-8\right)\)
\(\left(3x^2y^2+6x^2y^3-12xy\right)\div3xy\)
\(=xy+2xy-4\)
x^2/x-2+4-4x/x-2 ???
1) 2x(3x^2-7x+2)
<=> \(6x^3-14x^2+4x\)
2) (x-2)(3x^2+2x+4)
<=> \(3x^3-4x^2-8\)
3) (3x^2y^2+6x^2y^3-12xy)÷3xy
<=> xy + 2xy2 -4
4) X^2/x-2+4-4x/x-2
<=> \(\dfrac{x^2-4x+4}{x-2}=\dfrac{\left(x-2\right)^2}{x-2}=x-2\)
f(x,y)=x2+12xy+y2+3x+5y−1. Tính df(1,1).
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
câu 1 thực hiện phép tính
a) x2/x+1 + x/x+1 b)[2xy/x2-y2 + x-y/2x+2y] : x+y/2x
câu 2 cho phân thức 3x2+3x/x-1
a) tìm giá trị của x để giá trị phân thúc được xác định
b) tìm giá trị của x để giá trị của phân thúc bằng 0 ?
\(1,\\ a,\dfrac{x^2}{x+1}+\dfrac{x}{x+1}=\dfrac{x^2+x}{x+1}=\dfrac{x\left(x+1\right)}{x+1}=x\)
\(b,\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\dfrac{2x}{x+y}=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}=\dfrac{2x\left(x^2+2xy+y^2\right)}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{x}{x-y}\)
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2 (2x - 3)2 + 4
b. (3x + 2)2 + 2 (2 + 3x) (1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2 (x2 + 2xy) y2 + y4
d. (x - 1)3 + 3x (x - 1)2 + 3x2 (x -1) + x3
e. (2x + 3y) (4x2 - 6xy + 9y2)
f. (x - y) (x2 + xy + y2) - (x + y) (x2 - xy + y2)
g. (x2 - 2y) (x4 + 2x2y + 4y2) - x3 (x – y) (x2 + xy + y2) + 8y3
a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
a) x2 - 2x - 3 = 0
Dễ thấy pt có a - b + c = 0 nên có hai nghiệm x1 = -1 ; x2 = 3
Vậy phương trình có hai nghiệm x1 = -1 ; x2 = 3
b) -x2 + 7x - 6 = 0
Dễ thấy pt có a + b + c = 0 nên có hai nghiệm x1 = 1 ; x2 = 6
Vậy phương trình có hai nghiệm x1 = 1 ; x2 = 6
*đths e chưa làm đc vì mới lớp 8 :v*