Mong các bạn cộng tác viên hay các thầy cô online math hỗ trợ em ! 😊😊
Chứng mình rằng giá trị của biểu thức không phụ thuộc vào biến y :
a) (y-5).(y+8)-(y+4).(y-1)
b) y4 - (y2-1)(y2+1)
Thanh you⚠⚠
chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
a, A = y (x2 - y2) (x2 + y2) - y (x4 - y4)
b, B = (x - 1)3 - (x - 1) (x2 + x + 1) - 3 (1 - x) x
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
Chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến:
a) y.(x2-y2).(x2+y2)-y.(x4-y4)
b) (\(\dfrac{1}{3}\)+2x).(4x2-\(\dfrac{2}{3}\)x+\(\dfrac{1}{9}\))-(8x3-\(\dfrac{1}{27}\))
c) (x-1)3-(x-1).(x2+x+1)-3.(1-x).x
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x
P= (x+1)3 - (x+1)3 - [ (x-1)2 +(x+1)2]
Q= (2x-y)(4x2 +2xy+y2)+(2x+y)(4x2-2xy+y2)-16x3
Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$
$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.
$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$
$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)
$P=(x+1)^3-(x-1)^3-3[(x-1)^2+(x+1)^2]$
$=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-3[(x^2-2x+1)+(x^2+2x+1)]$
$=6x^2+2-3(2x^2+1)=3(2x^2+1)-3(2x^2+1)=0$ là giá trị không phụ thuộc vào giá trị của biến.
:Các biểu thức sau không phụ thuộc vào giá trị của biến đúng hay sai :
a/ 2(2x+x2)-x2(x+2)+(x3-4x+3) b/ x(x2+x+1)-x2(x+1) –x+5
c/ 3x(x-2)-5x(x-1)-8(x2-3) d/ 2y(y2+y+1)-2y2(y+1)-2(y+10)
Chứng mình rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến y (x≠0; y≠0) với biểu thức đó là A = 2 3 x 2 y 3 : - 1 3 x y + 2 x ( y - 1 ) ( y + 1 )
chứng minh giá trị của biểu thức sau không phụ thuộc vào biến y
(y - 5)(y+8) - (y+4) (y-1)
( y - 5 )( y + 8 ) - ( y + 4 )( y - 1 )
= y2 + 3y - 40 - ( y2 + 3y - 4 )
= y2 + 3y - 40 - y2 - 3y + 4
= -36
Vậy giá trị của biểu thức không phụ thuộc vào biến y ( đpcm
\(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)
\(=y^2+8y-5y-40-y^2+y-4y+4\)
\(=-36\)
=> Giá trị của biểu thức trên không phụ thuộc vào biến y
Bài làm :
Ta có :
\(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)
\(=y^2+8y-5y-40-y^2+y-4y+4\)
\(=-36\)
=> Giá trị của biểu thức trên không phụ thuộc vào biến y vì luôn =-36
=> Điều phải chứng minh
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến :
a,(x+4)(x^2-4x+16)-x^3+5
b,y(x^2-y^2)(x^2+y^2)-y(x^4-y^4)
a)\(\left(x+4\right)\left(x^2-4x+16\right)-x^3+5=x^3+64-x^3+5=69\)
Vậy biểu thức trên ko phụ thuộc vào biến x .
b)\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
Vậy biểu thức trên ko phụ thuộc vào biến x .
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến y (x≠0; y≠0) với biểu thức đó là A = 2 3 x 2 y 3 : - 1 3 x y + 2 x ( y - 1 ) ( y + 1 )
a/chứng minh rằng biểu thức sau không âm với mọi giá trị của biến
A=(-15.x^3.y^6):(-5xy^2)
b/chứng minh rằng giá trị biểu thức sau ko phụ thuộc vào giá trị của biến y(x,y khác 0)
B=2/3 x^2 y^3:(-1/3xy)+2x(y-1)(y+1)