Cho (5x-3y+4z).(5x-3y-4z)=(3x-5y)^2
CMR: x^2=y^2+z^2
CMR : Nếu x^2 - y^2 - z^2 = 0 thì ( 5x-3y+4z ) . ( 5x-3y - 4z ) = ( 3x - 5y )^2
Vì \(x^2-y^2-z^2=0\Rightarrow x^2-y^2=z^2\)
Biến đổi vế trái ta có :
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=25x^2-30xy+9y^2-16x^2+16y^2\)
\(=9x^2-30xy+25y^2\)
\(=\left(3x-5y\right)^2\) ( ĐPCM)
x^2-y^2-z^2=0.CMR
(5x-3y+4z).(5x-3y-4z)=(3x-5y)^2
Cho \(x^2-y^2-z^2=0\)
CMR:(5x-3y+4z)(5x-3y-4z)=\(\left(3x-5y\right)^2\)
Ta có:
\(x^2-y^2-z^2=0\)
\(16x^2-16y^2-16z^2=0\)
\(25x^2-9x^2+9y^2-25y^2-16z^2+30xy-30xy=0\)
\(\left(5x-3y\right)^2-16z^2= \left(3x-5y\right)^2\)
\(\left(5x-3y-4z\right)\left(5x-3y+4z\right)=\left(3x-5y\right)^2\)
cho x^2-y^2-z^2=0 chứng minh rằng: (5x-3y+4z)*(5x-3y-4z)=(3x-5y)^2
Cho x^2 -y ^2=4z^2 . CMR: (5x-3y+8z)(5x-3y-8z)=(3x-5y)^2
\(x^2-y^2=4z^2\\ \Leftrightarrow64z^2=16x^2-16y^2\)
\(\left(5x-3y+8z\right)\left(5x-3y-8z\right)\\ =\left(5x-3y\right)^2-64z^2\\ =25x^2-30xy+9y^2-64z^2\\ =25x^2-16x^2+9y^2+16y^2-30xy\\ =9x^2-30xy+25y^2=\left(3x-5y\right)^2\)
cho x2-y2-z2=0.CMR
(5x-3y+4z).(5x-37-4z)=(3x-5y)2
Vì x2 - y2 - z2 = 0 => x2 - y2 = z2
Biến đổi vế trái ta có:
(5x-3y+4z)(5x-37-4z)=(3x-5y)2 - 16z2
=25x2 - 30xy + 9y2 - 16(x2 - y2)
= 25x2 - 30xy + 9y2 - 16x2 + 16y2
= 9x2 - 30xy + 25y2
= (3x-5y)2 (đpcm)
Cho \(^{x^2-y^2-z^2=0.CMR:\left(5X-3Y+4Z\right)\left(5Z-3Y-4Z\right)=\left(3X-5Y\right)^2}\)
Ta có \(x^2-y^2-z^2=0\Rightarrow z^2=x^2-y^2\)
Có \(VT=\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-\left(4z\right)^2\)\(=\left(5x-3y\right)^2-16z^2=\left(5x-3y\right)^2-16\left(x^2-y^2\right)\)
\(=25x^2-30xy+9y^2-16x^2+16y^2=9x^2-30xy+25y^2\)
\(=\left(3x\right)^2-2.3x.5y+\left(5y\right)^2=\left(3x-5y\right)^2=VP\left(đpcm\right)\)
a) cho x^2 = y^2+z^2. chứng minh: (5x-3y+4z)(5x-3y-4z)=(3x-5y)^2
b) cho 10x^2=10y^2+z^2. chứng minh: (7x-3y+2z)(7x-3y-2z)=(3x-7y)^2
nếu x^2=y^2+z^2
chứng minh rằng
(5x-3y+4z)(5x-3y-4z)=(3x-5y)^2
Ta có
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16z^2\left(!\right)\)
Thay \(x^2=y^2+z^2\) vào ! thì
\(25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=\left(3x-5y\right)^2\)