Tìm x sao cho
a) ( x - 2024)2023 =1. b) (2 . x - 1)5 =32
c) 5<2x < 100
Tìm x thuộc Z, biết:
a, 8x . ( 2023 + x ) - 8x . ( x + 2024 ) = 56
b, 5 - 2025x = 9 - 2026 . ( x - 1 )
c, ( - 12 ) mũ 2 . x = 56 + 10 . 13x
d, - ( x - 32 + 11 ) = ( 21 - 33 - x + 7 )
e, - 2 . ( x + 6 ) + 6 . ( x + 10 ) = 8
a: \(8x\left(2023+x\right)-8x\left(x+2024\right)=56\)
=>\(8x\left(x+2023-x-2024\right)=56\)
=>-8x=56
=>\(x=\frac{56}{-8}=-7\) (nhận)
b: \(5-2025x=9-2026\left(x-1\right)\)
=>-2025x+5=9-2026x+2026
=>-2025x+5=-2026x+2035
=>x=2035-5=2030(nhận)
c: \(\left(-12\right)^2\cdot x=56+10\cdot13x\)
=>144x=56+130x
=>14x=56
=>x=4(nhận)
d: -(x-32+11)=(21-33-x+7)
=>-(x-21)=(-x-5)
=>-x+21=-x-5
=>21=-5(vô lý)
=>x∈∅
e: \(-2\left(x+6\right)+6\left(x+10\right)=8\)
=>-2x-12+6x+60=8
=>4x+52=8
=>4x=8-52=-44
=>\(x=-\frac{44}{4}=-11\) (nhận)
Tìm giá trị nhỏ nhất , lớn nhất : C= 16x2 - 8x + 2024
D= -25x2 + 50x - 2023
B=-x2 + 20x + 100
E=(2x - 1 )2 - ( 3 x + 2 ) nhân ( x - 5 )
F=( 3 x - 5 ) 2 - ( 3x + 2 ) nhân ( 4x - 1)
mk đang cần gấp mn giúp mình vs ạ
\(C=16x^2-8x+2024\)
\(\Rightarrow C=16x^2-8x+1+2023\)
\(\Rightarrow C=\left(4x-1\right)^2+2023\ge2023\left(\left(4x-1\right)^2\ge0\right)\)
\(\Rightarrow Min\left(C\right)=2023\)
\(D=-25x^2+50x-2023\)
\(\Rightarrow D=-\left(25x^2-50x+25\right)-1998\)
\(\Rightarrow D=-\left(5x-5\right)^2-1998\le1998\left(-\left(5x-5\right)^2\le0\right)\)
\(\Rightarrow Max\left(D\right)=1998\)
\(B=-x^2+20x+100=-\left(x^2-20x+100\right)+200=-\left(x-10\right)^2+200\le200\left(-\left(x-10\right)^2\le0\right)\)
\(\Rightarrow Max\left(B\right)=200\)
\(E=\left(2x-1\right)^2-\left(3x+2\right)\left(x-5\right)\)
\(\Rightarrow E=4x^2-4x+1-\left(3x^2-13x-10\right)\)
\(\Rightarrow E=4x^2-4x+1-3x^2+13x+10\)
\(\Rightarrow E=x^2+9x+11=x^2+9x+\dfrac{81}{4}-\dfrac{81}{4}+11\)
\(\Rightarrow E=\left(x+\dfrac{9}{2}\right)^2-\dfrac{37}{4}\ge-\dfrac{37}{4}\left(\left(x+\dfrac{9}{2}\right)^2\ge0\right)\)
\(\Rightarrow Min\left(E\right)=-\dfrac{37}{4}\)
\(F=\left(3x-5\right)^2-\left(3x+2\right)\left(4x-1\right)\)
\(\Rightarrow F=9x^2-30x+25-\left(12x^2+3x-2\right)\)
\(\Rightarrow F=-3x^2-33x+27=-3\left(x^2-10x+9\right)\)
\(\Rightarrow F=-3\left(x^2-10x+25\right)+48=-3\left(x-5\right)^2+48\le48\left(-3\left(x-5\right)^2\le0\right)\)
\(\Rightarrow Max\left(F\right)=48\)
a, cho a, b là 2 số thoả mãn |a-2b+3|\(^{2023}\) + (b-1)\(^{2024}\) = 0. Tính giá trị biểu thức
P = a\(^{2023}\) x b\(^{2024}\) + 2024
b, 3 số hữu tỉ x,y,z thoả mãn xy+yz+zx = 2023. Chứng tỏ rằng:
A = \(\dfrac{\left(x^2+2023\right)x\left(y^2+2023\right)x\left(z^2+2023\right)}{16}\) viết được dưới dạng bình phương của 1 số hữu tỉ
a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)
Tìm số nguyên dương x sao cho 5x +13 là bội của 2x+1
Tìm x biết (2x-18).(3x+12)=0
Tính S= 1-2-3+4+
5-6-7+8+...+2021-2022-2023+2024+2025
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
| 2x+1 | 1 | 3 | 7 | 21 |
| x | 0 | 1 | 3 | 10 |
| TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
tìm x thuộc z biết x + (x+1) + (x+2) + ... + 2023 + 2024 = 2024
\(x+\left(x+1\right)+\left(x+2\right)+...+2023+2024=2024\)
\(\Rightarrow2023x+4090506=2024-2024-20232023\)
\(\Rightarrow x+4090506=-2023\)
\(\Rightarrow2023x=-2023-4090506\)
\(\Rightarrow2023x=-4092529\)
\(\Rightarrow x=-2023\).
\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)
a
ĐK: \(x\ne5\)
\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\\ \Leftrightarrow\dfrac{x-5}{3}=\dfrac{12}{x-5}\\ \Leftrightarrow\left(x-5\right)^2=12.3=36\\ \Leftrightarrow\left\{{}\begin{matrix}x-5=6\\x-5=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=11\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
b
ĐK: \(x\ne0;x\ne-1\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{x}.\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2023}{4048}\\ \Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2023}{4048}=\dfrac{1}{4048}\\ \Leftrightarrow4048=x+1\\ \Leftrightarrow x=4047\left(tm\right)\)
a: =>(x-5)/3=12/(x-5)
=>(x-5)^2=36
=>x-5=6 hoặc x-5=-6
=>x=11 hoặc x=-1
b: =>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2023}{2024}\)
=>1/2-1/3+1/3-1/4+...+1/x-1/x+1=2023/4048
=>1/2-1/x+1=2023/4048
=>1/(x+1)=1/4048
=>x+1=4048
=>x=4047
tim gia tri lon nhat cho bieu tuc sau
a) A=2024-|x+2|-|y-2|
b)B=2023/ |2x+5|+2024
a: Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\left|y-2\right|\ge0\forall y\)
Do đó: \(\left|x+2\right|+\left|y-2\right|\ge0\forall x,y\)
=>\(-\left|x+2\right|-\left|y-2\right|\le0\forall x,y\)
=>\(A=-\left|x+2\right|-\left|y-2\right|+2024\le2024\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x+2=0\\ y-2=0\end{cases}\Rightarrow\begin{cases}x=-2\\ y=2\end{cases}\)
b: Ta có: \(\left|2x+5\right|\ge0\forall x\)
=>\(\left|2x+5\right|+2024\ge2024\forall x\)
=>\(B=\frac{2023}{\left|2x+5\right|+2024}\le\frac{2023}{2024}\forall x\)
Dấu '=' xảy ra khi 2x+5=0
=>2x=-5
=>\(x=-\frac52\)
Biểu thức \(A\) có chứa các giá trị tuyệt đối \(\mid x + 2 \mid\) và \(\mid y - 2 \mid\). Để \(A\) có giá trị lớn nhất, chúng ta cần làm sao cho các giá trị tuyệt đối này nhỏ nhất, bởi vì \(A\) là một hiệu và giá trị tuyệt đối luôn không âm. Do đó, \(A\) sẽ lớn nhất khi các biểu thức trong giá trị tuyệt đối đạt giá trị bằng 0.
Phân tích chi tiết:\(\mid x + 2 \mid\) đạt giá trị nhỏ nhất bằng 0 khi \(x = - 2\).\(\mid y - 2 \mid\) đạt giá trị nhỏ nhất bằng 0 khi \(y = 2\).Vậy, khi \(x = - 2\) và \(y = 2\), ta có:
\(A = 2024 - \mid x + 2 \mid - \mid y - 2 \mid = 2024 - 0 - 0 = 2024\)
Do đó, giá trị lớn nhất của \(A\) là 2024.
b) Tìm giá trị lớn nhất của \(B = \frac{2023}{\mid 2 x + 5 \mid} + 2024\)Biểu thức \(B\) có dạng tổng của hai phần, trong đó phần thứ nhất là \(\frac{2023}{\mid 2 x + 5 \mid}\) và phần thứ hai là một hằng số \(2024\). Để tìm giá trị lớn nhất của \(B\), chúng ta cần làm sao cho phần \(\frac{2023}{\mid 2 x + 5 \mid}\) đạt giá trị lớn nhất.
Phân tích chi tiết:Phần \(\frac{2023}{\mid 2 x + 5 \mid}\) có giá trị lớn nhất khi \(\mid 2 x + 5 \mid\) nhỏ nhất. Vì \(\mid 2 x + 5 \mid \geq 0\), ta cần \(\mid 2 x + 5 \mid\) càng nhỏ càng tốt.\(\mid 2 x + 5 \mid\) đạt giá trị nhỏ nhất bằng 0 khi \(2 x + 5 = 0\), tức là \(x = - \frac{5}{2}\).Vậy khi \(x = - \frac{5}{2}\), ta có:
\(B = \frac{2023}{\mid 2 x + 5 \mid} + 2024 = \frac{2023}{0} + 2024\)
Tuy nhiên, chia cho 0 là không xác định và không thể đạt được giá trị tại \(x = - \frac{5}{2}\). Vì vậy, ta không thể chọn \(x = - \frac{5}{2}\).
Tuy nhiên, khi \(\mid 2 x + 5 \mid\) càng lớn, phần \(\frac{2023}{\mid 2 x + 5 \mid}\) sẽ càng nhỏ, và ta muốn giá trị của \(\frac{2023}{\mid 2 x + 5 \mid}\) càng nhỏ thì \(B\) sẽ đạt giá trị tối thiểu. Giá trị lớn nhất của \(B\) sẽ đạt được khi \(\mid 2 x + 5 \mid\) đạt giá trị nhỏ nhất nhưng không bằng 0.
Do đó, giá trị lớn nhất có thể đạt được cho \(B\) khi \(2 x + 5\) càng gần 0.
Biết: x + (x - 1) - (x - 2) + (x - 3) - (x - 4) +.....+ (x - 2023) - (x -2024) =0
Vậy x =?
A. 0
B. -1011
C. -1012
D. -2024
Lời giải:
Ta có:
$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=2023.\frac{2024}{2023}$
$\Leftrightarrow 1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1=2024$
$\Leftrightarrow 3+\frac{x+z}{y}+\frac{y+z}{x}+\frac{x+y}{z}=2024$
$\Leftrightarrow 3+B=2024$
$\Leftrightarrow B=2021$