Cho a là số thực dương.Tìm GTNN của biểu thức S=\(\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}\)
1, Cho a là số thực dương.Tìm giá trị nhỏ nhất của biểu thức \(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}\)
Đặt \(\frac{a^2+1}{a}=x\Rightarrow x=\frac{a^2+1}{a}\ge\frac{2a}{a}=2\)
Khi đó:
\(S=\frac{5x}{2}+\frac{1}{x}=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{9x}{4}\ge2\sqrt{\frac{1}{x}\cdot\frac{x}{4}}+\frac{9\cdot2}{4}=1+\frac{18}{4}=\frac{11}{2}\)
Dấu "=" xảy ra tại a=1
a)Tính giá trị của biểu thức : S=\(\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(100^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)..\left(99^4+\frac{1}{4}\right)}\)
b) Cho x,y là các số thực dương.Tìm GTNN của biểu thức : P=\(\frac{x+y}{\sqrt{x\left(4x+5y\right)}+\sqrt{y\left(4y+5x\right)}}\)
a/ Ta có
\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)
Ta lại có
\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)
\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)
Áp dụng vào bài toán ta được
\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)
b/
\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)
\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)
\(=\frac{1}{3}\)
Dấu = xảy ra khi x = y
Bấm sao mà nói đẩy đáp số lên trên mất rồi
\(\Rightarrow1S=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)
Cho a, b, c là các số thực dương thỏa mãn a + b = ab. Tìm GTNN của biểu thức :
\(P=\frac{1}{a^2+2a}+\frac{1}{b^2+2b}+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
p \(\ge\)\(\frac{4}{a^2+b^2+2\left(a+b\right)}\) +\(\sqrt{\left(1+ab\right)^2}\) (bunhia và cosi)
=\(\frac{4}{a^2+b^2+2ab}+1+ab=\frac{4}{\left(a+b\right)^2}+a+b+1\)
do \(a+b=ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge4\)
dạt a+b = t thì t>=4
cần tìm min \(\frac{4}{t^2}+t+1=\frac{4}{t^2}+\frac{t}{16}+\frac{t}{16}+\frac{7t}{8}+1\)
\(\ge3.\sqrt[3]{\frac{4}{t^2}.\frac{t}{16}.\frac{t}{16}}+\frac{7.4}{8}+1=\frac{21}{4}\)
dau = xay ra khi a=b=2
(Bắc Ninh)
Cho \(a\)là số dương. Tìm GTNN của biểu thức
\(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}\).
\(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{10\left(a^2+1\right)}{4a}\)
\(S=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)
Vì \(a>0\)nên áp dụng bất dẳng thức Cô-si cho 2 số dương, ta được:
\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}\ge2\sqrt{\frac{a\left(a^2+1\right)}{4\left(a^2+1\right)a}}=2\sqrt{\frac{1}{4}}=2.\frac{1}{2}=1\left(1\right)\)
Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a^2+1\ge2a\)
\(\Leftrightarrow9\left(a^2+1\right)\ge9.2a=18a\)
\(\Leftrightarrow\frac{9\left(a^2+1\right)}{4a}\ge\frac{18a}{4a}=\frac{9}{2}\left(2\right)\)(vì \(a>0\))
Từ (1) và (2), ta được:
\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\ge1+\frac{9}{2}\)
\(\Leftrightarrow S\ge\frac{11}{2}\)
Dấu bằng xảy ra
\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{a^2+1}=\frac{a^2+1}{4a}\\a^2=1\end{cases}}\Leftrightarrow a=1\)(thỏa mãn \(a>0\))
Vậy \(minS=\frac{11}{2}\Leftrightarrow a=1\)
Cho các số thực a,b,c thỏa 0<a,b,c<1 và ab+bc+ca=1. Tìm GTNN của biểu thức:
\(A=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
1,cho a là số thực dương.Tìm giá trị nhỏ nhất của biểu thức \(S=\frac{1}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}\)
Lời giải:
Áp dụng BĐT AM-GM:
$\frac{1}{a^2+1}+\frac{a^2+1}{4a}\geq 2\sqrt{\frac{1}{4}}=1$
$a^2+1\geq 2a\Rightarrow \frac{9(a^2+1)}{4a}\geq \frac{9.2a}{4a}=\frac{9}{2}$
Cộng theo vế 2 BĐT trên ta có:
$\frac{1}{a^2+1}+\frac{5(a^2+1)}{2a}\geq \frac{11}{2}$
$\Leftrightarrow S\geq \frac{11}{2}$
Vậy $S_{\min}=\frac{11}{2}$ khi $a=1$
cho a;b;c là các số thực dương.Tìm Min của biểu thức:
\(A=\frac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\frac{a^3+b^3+c^3}{4abc}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
Cho số thực dương a,b,c thỏa mãn abc =1 . Tìm GTNN của biểu thức
P = \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ac+c+4}\)
alibaba nguyễn giúp em với WTFシSnow
Cho ba số thực dương a, b, c thỏa mãn abc=1. Tìm GTNN của biểu thức P=\(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ca+c+4}\)