ta có:
\(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)
áp dụng bất đẳng thức Cauchy ta có:
\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}\ge2\sqrt{\frac{a}{a^2+1}.\frac{a^2+1}{4a}}=2.\sqrt{\frac{1}{4}}=1\)
\(\frac{9\left(a^2+1\right)}{4a}\ge\frac{9.2a}{4a}=\frac{9}{2}\)
\(\Rightarrow S\ge\frac{9}{2}+1=\frac{11}{2}\)
Vậy \(Min_S=\frac{11}{2}\)khi a=1
bạn ơi tại sao lại là \(\frac{9\left(a^2+1\right)}{4a}=\frac{9.2a}{4a}\)