22014+22015+22016+22017
tìm 3 chữ số tận cùng
B = 22018 - 22017 - 22016 - 22015 - 22014
\(B=2^{2018}-2^{2017}-2^{2016}-2^{2015}-2^{2014}\)
\(=>2B=2^{2019}-2^{2018}-2^{2017}-2^{2016}-2^{2015}\)
\(=>2B+B=2^{2019}-2^{2014}\)
\(=>B=\dfrac{2^{2019}-2^{2014}}{3}\)
tìm x:
2x + 1 . 22014= 22015
\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)
Tính giá trị của biểu thức
M = 2 2016 C 2017 1 + 2 2014 C 2017 3 + 2 2012 C 2017 5 + ⋯ + 2 0 C 2017 2017
A. 3 2017 + 1
B. 1 / 2 3 2017 + 1
C. 3 2017 - 1
D. 1 / 2 3 2017 - 1
Ta có 2 + 1 2017 = C 2017 0 .2 2017 + C 2017 1 .2 2016 + ... + C 2017 2017 .2 0
2 − 1 2017 = C 2017 0 .2 2017 + C 2017 1 .2 2016 . − 1 + ... + C 2017 2017 .2 0 . − 1 2017
Trừ từng vế hai đẳng thức trên ta được:
3 2017 − 1 = 2 C 2017 1 .2 2016 + C 2017 3 .2 2014 + ... + C 2017 2017 .2 0
Vậy M = 3 2017 − 1 2
Chọn đáp án D.
22015 + 32014
tìm số tận cùng
17^2023 tìm số tận cùng
^ là mũ
a, Áp dụng các t/c các số tận cùng là 1 và 6khi tăng bậc số tận cùng vẫn là 6 và 6.
22015=2.22014=2.41007=2.4.41006=8.16503=8.(...6)=(...8)
32014=91007=9.91006=9.81503=9.(...1)=(...9)
=22015 + 32014 =(...8)+(...9)=(...7)
b, 172023≡72023=7.72022=7.491011=7.49.491010=7.49.2401505=(...3)
22015 + 32014
tìm số tận cùng
17^2023 tìm số tận cùng
^ là mũ
Ta có: \(2^1=..2\)
\(2^2=..4\)
\(2^3=..8\)
\(2^4=..6\)
\(2^5=..2\)
\(2^6=..4\)
\(...\)
Lần lượt như vậy, ta sẽ có:
\(2^{4k+1}=..2\)
\(2^{4k+2}=..4\)
\(2^{4k+3}=..8\)
\(2^{4k}=..6\)
Ta có: \(2015=4.503+3\)
\(=>2015=4k+3\)
\(=>2^{2015}=..8\)
Ta lại có: \(3^1=..3\)
\(3^2=..9\)
\(3^3=..7\)
\(3^4=..1\)
\(3^5=..3\)
\(3^6=..9\)
\(...\)
Lần lượt như vậy,ta có quy luật:
\(3^{4k+1}=..3\)
\(3^{4k+2}=..9\)
\(3^{4k+3}=..7\)
\(3^{4k}=..1\)
Ta có: \(2014=4.503+2\)
\(=>2014=4k+2\)
\(=>3^{2014}=..9\)
VẬY: \(2^{2015}+3^{2014}=..8+..9=..7\)
=> \(2^{2015}+3^{2014}\) có tận cùng là 7.
------------------------------------------------------------
Ta có: \(17^1=..7\)
\(17^2=..9\)
\(17^3=..3\)
\(17^4=..1\)
\(17^5=..7\)
\(17^6=..9\)
Lần lượt như vậy, ta có quy luật:
\(17^{4k+1}=..7\)
\(17^{4k+2}=..9\)
\(17^{4k+3}=..3\)
\(17^{4k}=..1\)
TA CÓ; \(2023=4.505+3\)
\(=>2023=4k+3\)
\(=>17^{2023}=..3\)
Vậy \(17^{2023}\) có tận cùng là 3.
Cho F=42010 +22014 . chứng minh F chia hết cho 10
42k42k có tận cùng là 6 => 4201042010 có tận cùng là 66
22014=4100722014=41007
42k+142k+1 có tận cùng là 4=>220144=>22014 có tận cùng là 44
=> 42010+2201442010+22014 có tận cùng là 0 nên chia hết cho 10
mình làm có đúng ko các bạn?
Hình như là không
Quá dài nên có thể lẫn lộn
Cách đơn giản hơn
Ta có:
41=4
42=16
43=64
44=256
...
=>Số 4 mũ lẽ tận cùng = 4. Số 4 mũ chẵn tận cùng = 6
Áp dụng vào 42010 ta có:
42010 có mũ là số chẵn
=> 42010 tận cùng là số 6
Tương tự áp dụng vào 22014 :
Ta có:
21= 2
22 = 4
23 = 8
24 =16
25= 32
26 = 64
...
=> Số tận cùng của kết quả theo chu kì 2, 4, 8, 6.
Ta có: 2014 : 4 = 503 (dư 2)
Vậy theo chu kì thì 22014 tận cùng bằng số 4
Ta có:
42010 tận cùng = 6
22014 tận cùng = 4
Tận cùng 2 thừa số này cộng lại ra 10
=> 42010 + 22014 có tận cùng là số 0
=> 42010 + 22014 chia hết cho 10
Chúc bạn hok tốt!
#TTVN
1 Chứng tỏ rằng
a) A + 1 là 1 luỹ thừa của 2 Biết A = 1 + 2 + 22 + ... + 280
b) 2B - 1 là 1 luỹ thừa của 3 Biết B = 1 + 3 + 32 + ... + 399
2 Tìm số tự nhiên x biết
a) 2x . ( 1 + 2 + 22 + 23 + ... = 22015 ) + 1 = 22016
b) 8x - 1 = 1 + 2 + 22 + 23 + ... + 22015
( giải chi tiết hộ mình với ạ Cảm ơn <3 )
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
Câu 1.
1) Tính nhanh: 1975.14 + 86.1975
2) Thực hiện phép tính: [3(27 + 75 : 52) - 15.22] + 20150
3) Từ ba chữ số 3; 0 và 5 hãy viết các số có ba chữ số khác nhau thỏa mãn điều kiện số đó chia hết cho 5.
Câu 2.
1) Tìm số tự nhiên biết:
a) - 105:21 = 519: 517
b) 48⋮x, 60⋮x, 72⋮x và lớn nhất.
2) Viết tập hợp gồm các số tự nhiên lớn hơn 3 và nhỏ hơn 10 bằng 2 cách, sau đó điền ký hiệu ∈, ∉ thích hợp vào ô trống:
Câu 3.
Hai bạn An và Bách cùng học tại một trường Trung học sơ sở nhưng ở hai lớp khác nhau. Bạn An cứ 10 ngày lại trực nhật một lần còn bạn Bách cứ 12 ngày lại trực nhật một lần. Hỏi sau khi hai bạn cùng trực nhật vào một ngày thì ít nhất bao nhiêu ngày nữa hai bạn đó lại cùng trực nhật ?
Câu 4.
Trên tia lấy hai điểm và sao cho
1) Tính độ dài đoạn thẳng .
2) Vẽ tia là tia đối của tia . Trên tia lấy điểm sao cho . Hỏi điểm có là trung điểm của đoạn thẳng không ? Vì sao?
Câu 5.
Cho biểu thức A = 2 + 22 + 23 + 24 +25 + 26 + ...+ 22014 + 22015 +22016
Chứng minh rằng A chia hết cho 7.
1, 1975 . 14 + 86 . 1975 = 1975 . (14 +86 )=1975 .100 = 197500
1. Tìm chữ số tận cùng của tích:
S = 2 x 2 x 2 x 2 x ... x 2 (2023 chữ số 2)
2. Tìm chữ số tận cùng của tích:
S = 3 x 13 x 23 x ... x 2023
3. Tìm chữ số tận cùng của tích:
S = 4 x 4 x 4 x ... x 4 (2023 chữ số 4)
4. Tìm chữ số tận cùng của tích:
S = 7 x 17 x 27 x ... x 2017
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
1. Tìm chữ số tận cùng của tích:
S = 2 x 2 x 2 x 2 x ... x 2 (2023 chữ số 2)
2. Tìm chữ số tận cùng của tích:
S = 3 x 13 x 23 x ... x 2023
3. Tìm chữ số tận cùng của tích:
S = 4 x 4 x 4 x ... x 4 (2023 chữ số 4)
4. Tìm chữ số tận cùng của tích:
S = 7 x 17 x 27 x ... x 2017
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
Bài 3:
A =4 x 4 x 4 x...x 4(2023 chữ số 4)
vì 2023 : 2 = 1011 dư 1
A = (4 x 4) x (4 x 4) x...x(4 x 4) x 4 có 1011 nhóm (4 x 4)
A = \(\overline{..6}\) x \(\overline{..6}\) x \(\overline{..6}\) x 4
A = \(\overline{...6}\) x 4
A = \(\overline{...4}\)