Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
English Study
Xem chi tiết
Lương Thị Vân Anh
16 tháng 8 2023 lúc 10:37

a) Ta có A = 21 + 2+ 23 + ... + 22022

2A = 2+ 23 + 24 + ... + 22023

2A - A = ( 2+ 23 + 24 + ... + 22023 ) - ( 21 + 2+ 23 + ... + 22022 )

A = 22023 - 2

Lại có B = 5 + 5+ 5+ ... + 52022

5B = 5+ 5+ 54 + ... + 52023

5B - B = ( 5+ 5+ 54 + ... + 52023 ) - ( 5 + 5+ 5+ ... + 52022 )

4B = 52023 - 5

B = \(\dfrac{5^{2023}-5}{4}\)

b) Ta có : A + 2 = 2x

⇒ 22023 - 2 + 2 = 2x

⇒ 22023 = 2x

Vậy x = 2023

Lại có : 4B + 5 = 5x

⇒ 4 . \(\dfrac{5^{2023}-5}{4}\) + 5 = 5x

⇒ 52023 - 5 + 5 = 5x

⇒ 52023 = 5x

Vậy x = 2023

 

Mỹ ánh
Xem chi tiết
Kiều Vũ Linh
26 tháng 12 2022 lúc 8:26

a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²

2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³

A = 2A - A

= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)

= 2²⁰²³ - 2⁰

= 2²⁰²³ - 1

Vậy A = B

b) A = 2021 . 2023

= (2022 - 1).(2022 + 1)

= 2022.(2022 + 1) - 2022 - 1

= 2022² + 2022 - 2022 - 1

= 2022² - 1 < 2022²

Vậy A < B

Tô Trung Hiếu
Xem chi tiết
Lương Thị Vân Anh
25 tháng 7 2023 lúc 14:38

Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)

\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)

Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)

2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)

2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)

Suy ra  A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2

Vậy A < 2

Phạm Quang Lộc
25 tháng 7 2023 lúc 14:32

\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)

 

 

Phạm Quang Lộc
25 tháng 7 2023 lúc 14:34

Sửa:

$2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{20 23}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2$
Nezuko-chan
Xem chi tiết
Nguyễn Đức Trí
29 tháng 7 2023 lúc 16:09

a) \(S=1+2+2^2+2^3+...+2^{2022}=\dfrac{2^{2022+1}-1}{2-1}=2^{2023}-1\)

b) \(S=1+4+4^2+4^3+...+4^{2022}=\dfrac{4^{2022+1}-1}{4-1}=\dfrac{4^{2023}-1}{3}\)

Phạm Quang Lộc
29 tháng 7 2023 lúc 16:45

\(S=1+2+2^2+2^3+...+2^{2022}\\ 2S=2+2^2+2^3+2^4+...+2^{2023}\\ 2S-S=2+2^2+2^3+2^4+...+2^{2023}-1-2-2^2-2^3-...-2^{2022}\\ S=2^{2023}-1\\ S=4+4^2+4^3+...+4^{2022}\\ 4S=4^2+4^3+4^4+...+4^{2023}\\ 4S-S=4^2+4^3+4^4+...+4^{2023}-4-4^2-4^3-...-4^{2023}\\ 3S=4^{2023}-4\\ S=\dfrac{4^{2023}-4}{3}\)

 

Hồng Võ
Xem chi tiết
Monkey D. Luffy
17 tháng 11 2021 lúc 16:45

\(a,\Rightarrow x+2=-40\\ \Rightarrow x=-42\\ b,\Rightarrow6x-7-2x=5\\ \Rightarrow4x=12\Rightarrow x=3\\ c,\Rightarrow68-56-x=-2\\ \Rightarrow12-x=-2\\ \Rightarrow x=14\)

Ga*#lax&y
Xem chi tiết
Lê Phạm Bảo Hân
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 14:40

Câu 1: 

$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$

$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$

$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$

-----------------

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$

$=2+7(2^2+2^5+...+2^{2018})$

$\Rightarrow A$ chia $7$ dư $2$.

Akai Haruma
31 tháng 12 2023 lúc 14:41

Câu 2:

$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$

$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$

-------------------

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$

$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

hoàng thị thanh hoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2023 lúc 20:47

\(A=2+2^2+2^3+...+2^{2021}\)

=>\(2A=2^2+2^3+2^4+...+2^{2022}\)

=>\(2A-A=2^2+2^3+...+2^{2021}+2^{2022}-2-2^2-2^3-...-2^{2021}\)

=>\(A=2^{2022}-2\)

=>A<B

Nguyễn Hà Minh Nghĩa
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 12 2021 lúc 19:51

\(A=1+2+2^2+...+2^{2022}\)

\(\Rightarrow2A=2+2^2+...+2^{2023}\)

\(\Rightarrow2A-A=2^{2023}-1\)

\(\Rightarrow A=2^{2023}-1\)

\(\Rightarrow A< 2^{2023}=2^2.2^{2021}=4.2^{2021}< 5^{2021}\)

\(\Rightarrow A< B\)