B=1/1.6+1/6.11+1/11.16+...+1/101.106
B= 1/1.6 + 1/6.11 + 1/11.16 + ... + 1/101.106
=1/5(5/1*6+5/6*11+...+5/101*106)
=1/5(1-1/6+1/6-1/11+...+1/101-1/106)
=1/5(1-1/106)
=1/5*105/106
=21/106
52/1.6+52/6.11+52/11.16+...+52/101.106
\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{101\cdot106}\right)\\ =5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\\ =5\left(1-\dfrac{1}{106}\right)=5\cdot\dfrac{105}{106}=\dfrac{525}{106}\)
Bài 1 : Tính
a) A = \(\left(\dfrac{2}{3}+\dfrac{3}{4}-\dfrac{7}{12}\right):\left(\dfrac{55}{123}+\dfrac{555}{1234}+\dfrac{5555}{12345}\right)\)
b) B = \(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{101.106}\)
c) C = \(\dfrac{2x^2+3x-1}{3x-2}\) với \(\left|x-1\right|=2\)
a, bạn tự làm
b, \(B=\dfrac{5^2}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\)
\(=5\left(1-\dfrac{1}{106}\right)=\dfrac{5.105}{106}=\dfrac{525}{106}\)
c, đk : \(x\ne\dfrac{2}{3}\)
Ta có : \(\left|x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)(tm)
Với x = 3 suy ra \(C=\dfrac{2.9+9-1}{3.3-2}=\dfrac{26}{7}\)
Với x = -1 suy ra \(C=\dfrac{2-3-1}{-3-2}=\dfrac{-2}{-5}=\dfrac{2}{5}\)
S=1/1.6+1/6.11+1/11.16+.....+1/496.501
5S=5.(1/1.6+1/6.11+...+1/496.501)
5S=5/1.6+5/6.11+...+5/496.501
5S=1/1-1/6+1/6-1/11+...+1/496-1/501
5S=1-1/501
5S=500/501
S=500/501:5=100/501
k nhé
ta co:5S=5/1.6+5/6.11+5/11.16+...+5/496.501
=1-1/6+1/6-1/11+1/11-1/16+.....+1/496-1/501
=1-1/501=500/501
=>S=500/501:5=100/501
MK đau tien nha bn
S = 1/1.6+1/6.11+1/11.16+...+1/496.501
1/1.6 + 1/6.11+ 1/11.16+ ....
số thứ 100 có dạng 1/(496.501)
do đó tổng trên bằng :
1/5( 1/1- 1/501)
= 100/ 501
1/1-1/6+1/6-1/11+...+1/496-1/501
=1/1-1/501=500/501
\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)
Lời giải:
\(5A=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{501-496}{496.501}\)
\(=\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+\frac{16}{11.16}-\frac{11}{11.16}+...+\frac{501}{496.501}-\frac{496}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{496}-\frac{1}{501}=1-\frac{1}{501}=\frac{500}{501}\)
$\Rightarrow A=\frac{100}{501}$
\(A=\dfrac{1}{5}\left(\dfrac{1}{1.6}+...+\dfrac{1}{496.501}\right)\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\cdot\cdot\cdot+\dfrac{1}{495}-\dfrac{1}{501}\right)\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)
\(A=\dfrac{1}{5}\cdot\dfrac{500}{501}=\dfrac{100}{501}\)
Tính :
E=1/1.6+1/6.11+1/11.16+...+1/496.501
Help !
Tính hợp lí :
A= 1/1.6 - 1/6.11 - 1/11.16 -1/16. 21 -...- 1/46.51
\(A=\dfrac{1}{1\cdot6}-\dfrac{1}{6\cdot11}-\dfrac{1}{11\cdot16}-\dfrac{1}{16\cdot21}-...-\dfrac{1}{46\cdot51}\)
\(=\dfrac{1}{6}-\left(\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+\dfrac{1}{16\cdot21}+...+\dfrac{1}{46\cdot51}\right)\)
\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{5}{6\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{5}{16\cdot21}+...+\dfrac{5}{46\cdot51}\right)\)
\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{46}-\dfrac{1}{51}\right)\)
\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{1}{6}-\dfrac{1}{51}\right)\)
\(=\dfrac{1}{6}-\dfrac{1}{5}\cdot\dfrac{5}{34}\)
\(=\dfrac{1}{6}-\dfrac{1}{34}\)
\(=\dfrac{7}{51}\)
Vậy \(A=\dfrac{7}{51}\)
Chứng minh 1/1.6+1/6.11+1/11.16+...+1/(5n+1)(5n+6)=n+1/5n+6
CM: \(\dfrac{1}{1.6}\)+ \(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+6}\)
A = \(\dfrac{1}{5}\)(\(\dfrac{5}{1.6}\) + \(\dfrac{5}{6.11}\)+...+ \(\dfrac{5}{\left(5n+1\right).\left(5n+6\right)}\))
A = \(\dfrac{1}{5}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{6}\)+ \(\dfrac{1}{6}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{5n+1}\) - \(\dfrac{1}{5n+6}\))
A = \(\dfrac{1}{5}\) .( \(\dfrac{1}{1}\) - \(\dfrac{1}{5n+6}\))
A = \(\dfrac{1}{5}\). \(\dfrac{5n+6-1}{5n+6}\)
A = \(\dfrac{1}{5}\). \(\dfrac{5n+5}{5n+6}\)
A = \(\dfrac{1}{5}\) . \(\dfrac{5.\left(n+1\right)}{5n+6}\)
A = \(\dfrac{n+1}{5n+6}\)
⇒\(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\)+ \(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+1}\) (đpcm)
\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\)
\(A=\dfrac{1}{5}\left[1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right]\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)
\(A=\dfrac{1}{5}\left(\dfrac{5n+6-1}{5n+6}\right)=\dfrac{1}{5}\left(\dfrac{5n+5}{5n+6}\right)=\dfrac{1}{5}.5\left(\dfrac{n+1}{5n+6}\right)=\dfrac{n+1}{5n+6}\)
\(\Rightarrow dpcm\)