Giải phương trình:
3x2 -2y2=1
đây là phương trình Pell nhé, mong mọi người giải hộ mình
Giải phương trình nghiệm nguyên:
3x2 + 5xy - 8x -2y2 - 9y - 4 = 0
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t\in\mathbb{N}$)
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng phương trình tích đơn giản rồi. Bạn chỉ cần xét TH. Lưu ý rằng $t+7y+2>0$ và $t-7y-2, t+7y+2$ có cùng tính chẵn lẻ.
Cho pt X^2+3X-7=0(1) Gọi X1;X2 là 2 nghiệm phân biệt của Phương trình (1) không giải phương trình hãy tính giá trị của biểu thức F=X1^2-3X2 -2013
Mọi người có nhiều cách giải thì giúp em với ạ
Vì \(x_1\) là nghiệm PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)
\(F=x_1^2-3x_2-2013=7-3x_1-3x_2-2013\\ F=-3\left(x_1+x_2\right)-2006\)
Mà theo Viét ta có \(x_1+x_2=-3\)
\(\Rightarrow F=\left(-3\right)\left(-3\right)-2006=-1997\)
Giải hệ phương trình: (Coi 1 phương trình là phương trình bậc hai)
\(\hept{\begin{cases}x^2+2y^2-2xy=5\\x^2-4y^2-8x+4y+15=0\end{cases}}\)
Giải cụ thể ra hộ mình với nhé!!
Giải phương trình: \(x^2+6x+6+\left(\frac{x+3}{x+4}\right)^2=0\)
Phương trình ra nghiệm không đẹp nhưng mọi người vẫn giải giùm mình nhé
Tick cho mình trước khi đọc nha thể nào cũng đúng
Ta có \(x^2+6x^2+6+\left(\frac{x+3}{x+4}\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\frac{x+3}{x+4}\right)^2-3=0\)
\(\Leftrightarrow\left(x+3\right)^2-2\left(x+3\right)\frac{\left(x+3\right)}{\left(x+4\right)}+\left(\frac{x+3}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(x+3-\frac{x+3}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{\left(x+3\right)\left(x+4\right)-\left(x+3\right)}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{x^2+7x+12-\left(x+3\right)}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{x^2+6x+9}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{\left(x+3\right)^2}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
Đặt \(\frac{\left(x+3\right)^2}{x+4}=a\) pt <=> \(a^2+2a-3=0\Leftrightarrow\left(a+3\right)\left(a-1\right)=0\)
nên a=-3 hoặc a=1
Với a=-3 thì \(\frac{\left(x+3\right)^2}{x+4}=-3\Leftrightarrow x^2+6x+9=-3\left(x+4\right)\Leftrightarrow x^2+9x+21=0\)
nên pt này vô nghiệm
Với a=1 thì \(\frac{\left(x+3\right)^2}{x+4}=1\Leftrightarrow x^2+6x+9=\left(x+4\right)\Leftrightarrow x^2+5x+5=0\)
Giải ra được 2 nghiệm
Vậy....
Giải phương trình: \(x^2+6x+6+\left(\frac{x+3}{x+4}\right)^2=0\)
Phương trình ra nghiệm không đẹp nhưng mọi người vẫn giải giùm mình nhé
biết nghiệm là biết cách làm rồi,hỏi chi
Giải các phương trình sau: 2 x 2 - 1 - 3 x 2 = 3 x 2 - 1 - 2 x 2 + 2 . Tổng các nghiệm của phương trình là:
A. 2
B. 3
C. 0
D. 2 3
cho hệ phương trình (m-1)x-y=2 và mx+y=m.tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0.Mình đang cần câu trả lời gấp vì sắp đi học nên mọi người giải hộ mình với!
Giải phương trình nghiệm nguyên dương: \(2\left(x+y+z\right)=xyz\)
Mong mọi người giúp
Thế nào là phương trình tích? Nêu cách giải?
sos mọi người giúp mình
phương trình tích là phương trình có dạng A*B=0
=>A=0 hoặc B=0
Dạng tổng quát của phương trình tích: A(x) . B(x) = 0
TH1: A(x) = 0
TH2: B(x) = 0
Phương trình tích có dạng: A(x).B(x)=0
Để giải phương trình này ta áp dụng công thức:
A(x).B(x)=0⇔A(x)=0 hoặc B(x)=0