Cho tam giác ABC cân tại A, lấy M,N lần lượt là trung điểm của AC,AB.
a) Chứng minh BM=CN
b)Gọi O là giao điểm của BM và CN.Chứng minh tam giác BOC cân
c)Chứng minh AO là tia phân giác của của góc BAC
Cho tam giác ABC có AB<AC. AD là tia phân giác của góc BAC. trên cạnh AC lấy điểm M sao cho AM=AB.
a, Chứng minh tam giác ABD = tam giác AMD.
b, Gọi I là giao điểm của AD và BM. Chứng minh I là trung điểm BM và AI vuông góc với BM
c, Gọi K là trung điểm của AM, trên tia đối của tia KB lấy điểm P sao cho KB = KP. chứng minh MP // AB.
d, trên tia đối của tia MP lấy điểm E sao cho MP = ME. Chứng minh A, I, E thẳng hàng
giúp nhanh mik vs mik đang cần gấp ạ
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>D nằm trên đường trung trực của BM(1)
Ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AD là đường trung trực của BM
=>AD\(\perp\)BM tại I và I là trung điểm của BM
c: Xét ΔKBA và ΔKPM có
KB=KP
\(\widehat{BKA}=\widehat{PKM}\)(hai góc đối đỉnh)
KA=KM
Do đó: ΔKBA=ΔKPM
=>\(\widehat{KBA}=\widehat{KPM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//MP
Cho tam giác ABC cân tại A có góc BAC=80 độ, kẻ đường cao BE và CD cắt nhau tại O. a) Chứng minh: tam giác EBA= tam giác DCA và tính góc ABE, góc ABC. b) Chứng minh AO là tia phân giác của góc BAC. c) Gọi BM và CN lần lượt là các tia phân giác ngoài của góc ABC và góc ACB, F là giao điểm của BM và CN. Chứng minh 3 điểm A,O,F thẳng hàng
Tại sao các ca sĩ thường đến phòng thu âm chuyên dụng để thu bài hát chứ không thu tại nhà hát hay sân khấu?
Cho tam giác ABC cân tại A. Trên canh AB và AC lần lượt lấy các điểm M và N sao cho BM = CN
a, Chứng minh tam giác BMC = tam giác CNB
b, Chứng minh góc ABN = góc ACM
c, Chứng minh MN // BC
d, Gọi O là giao điểm của BN và CM. I là trung điểm của BC. Chứng minh ba điểm A, O, I thẳng hàng.
VẼ HÌNH GIÚP MÌNH NHA. CẢM ƠN Ạ
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔMBC=ΔNCB
b: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)
nên \(\widehat{ABN}=\widehat{ACM}\)
c: AM+MB=AB
AN+NC=AC
mà AB=AC
và MB=NC
nên AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
=>OB=OC
=>O nằm trên đường trung trực của BC(1)
AB=AC
=>A nằm trên đường trung trực của BC(2)
IB=IC
=>I nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,I thẳng hàng
cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AC, AB
a) Chứng minh BM = CN và tam giác ABM = tam giác ACN
b) Gọi I là giao điểm của BM và CN. Chứng minh tam giác IBC cân
c) Chứng minh AI là tia phân giác của góc A
MÌNH TICK CHO BẠN NÀO NHANH VÀ ĐÚNG NHẤT NHA
a)
ta có: AB=AC suy ra 1/2 AB=1/2AC suy ra AN=NB=AM=MC
xét tam giác ABM và tam giác ACN có:
AB=AC
AM=AN(cmt)
A(chung)
suy ra tam giác ABM=ACN(c.g.c)
suy ra BM=CN
b)
ta có: I là trọng tâm cua tam giác ABC
ta có: MB=NC(theo câu a) suy ra 2/3MB=2/3NC suy ra IB=IC suy ra tam giac IBC cân tại I
c)
xét tam giác AIB và tam giác AIC có:
AB=AC
AI(chung)
IB=IC
suy ra tam giác AIB=AIC(c.c.c)
suy ra BAI=CAI
suy ra AI là phân giác của góc A
Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AC và AB.
a) Chứng minh BM = CN và góc ABM = góc ACN.
b) Gọi I là giao điểm của BM và CN. Chứng minh tam giác IBC cân.
c) Chứng minh AI là phân giác của góc A.
d) Chứng minh AI vuông góc BC
CM BNC=CMB
MC=BN ; \(\widehat{B}=\widehat{C}\) ; BC chung
\(\Rightarrow\)BM=CN
CM ABM=ACN
AB=AC ; AM=AN ; \(\widehat{A}\) chung
\(\Rightarrow\)ABM =ACN \(\Rightarrow\) \(\widehat{ABM}=\widehat{ACN}\)
b \(\widehat{ABM}=\widehat{ACN}\) \(\Rightarrow\)\(\widehat{ABI}=\widehat{ACI}\);
\(\Rightarrow\) \(\widehat{AMB}=\widehat{ANC}\)\(\Rightarrow\)\(\widehat{BMC}=\widehat{CNB}\)
Xét BIN vs CIM : BN=CM ; \(\widehat{ACM}=\widehat{ACN};\)\(\widehat{BMC}=\widehat{CNB}\)
\(\Rightarrow\) IB=IC \(\Rightarrow\)IBC cân
c, Xét AIB và AIC : IB =IC ; \(\widehat{ABI}=\widehat{ACI};AB=AC\)
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\)\(\Rightarrow\)AI pg góc A
d, xét BAD và CAD
góc BAI = CAI ; AB=AC ; AD chung
\(\Rightarrow\)góc ADB = ADC mà chúng cộng nhau = 180 \(\Rightarrow\)\(\widehat{D}\)= 90
Cho tam giác ABC cân tại A, gọi M, N lần lượt là trung điểm của AB, AC. Các đường trung trực của AB, AC cắt nhau tại O. a) Chứng minh AD là phân giác của góc BAC. b) Chứng minh tam giác OBC cân c) Chứng minh MN // BC. d) Chứng minh AO vuông góc với MN.
a: Xét ΔAMO vuông tại M và ΔANO vuông tại N có
AO chung
AM=AN
Do đó: ΔAMO=ΔANO
=>góc MAO=góc NAO
=>AO là phân giác của góc MAN
b: OB=OA
OA=OC
Do đó: OB=OC
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Bài 2: Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AC, AB.
a. Chứng minh BM=CN và ··ABM = ACN?
b. Gọi I là giao điểm của BM và CN. Chứng minh tam giác IBC cân?
c. Chứng minh AI là phân giác của góc A?
d. Chứng minh AI vuông góc với BC?
a/ Có AB = AC ( tam giácABC cân tại A) , mà M , N lan luot la trung điểm cua AC , AB Suy ra AM = AN Xét tam giác AMB và tam giác ANC có: Góc A : góc chung AB = AC ( tam giác ABC cân tại A) AM = AN ( cmt) Suy ra : tam giácAMB = tam giác ANC ( c - g - c) Suy ra BM = CN ( 2 cạnh t/ứng ) Phan b , c ,d mik đều làm đc nhunh giờ điện thoại mik hết pin rồi
Cho tam giác ABC cân tại A.BM lÀ phÂn giác góc ABC,CN là phân giác góc ACB
a) chứng minh BM=CN
b) gọi I là giao điểm của BM và CN,K là giao điểm của AI và MN. Chứng minh tam giác IBC cân và K là trung điểm của MN
giải nhanh giùm mình đc k ạ mai mình phải nộp r mà vẫn chx hiểu
a: Xét ΔABM và ΔACN co
góc ABM=góc ACN
AB=AC
góc BAM chung
=>ΔABM=ΔACN
=>BM=CN
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
mà AB=AC
nên AI là trung trực của BC
=>AI vuông góc BC
=>AI vuông góc MN tại K
=>K là trung điểm của MN