Cho tam giác ABC có AB<AC. AD là tia phân giác của góc BAC. trên cạnh AC lấy điểm M sao cho AM=AB.
a, Chứng minh tam giác ABD = tam giác AMD.
b, Gọi I là giao điểm của AD và BM. Chứng minh I là trung điểm BM và AI vuông góc với BM
c, Gọi K là trung điểm của AM, trên tia đối của tia KB lấy điểm P sao cho KB = KP. chứng minh MP // AB.
d, trên tia đối của tia MP lấy điểm E sao cho MP = ME. Chứng minh A, I, E thẳng hàng
giúp nhanh mik vs mik đang cần gấp ạ
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>D nằm trên đường trung trực của BM(1)
Ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AD là đường trung trực của BM
=>AD\(\perp\)BM tại I và I là trung điểm của BM
c: Xét ΔKBA và ΔKPM có
KB=KP
\(\widehat{BKA}=\widehat{PKM}\)(hai góc đối đỉnh)
KA=KM
Do đó: ΔKBA=ΔKPM
=>\(\widehat{KBA}=\widehat{KPM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//MP