a+b=a3+b3=1.Cm a2+b2=a4+b4
Cho A1=B1 Chứng minh a)A1=B3, A4=B2 b)A2=B2, A3=B3, A4=B4 c)A2+B1=180°,A4+B3=180°
giúp mik vs
a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh
\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu
Do đó \(\widehat{A_1}=\widehat{B_3}\)
Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù
=> \(\widehat{A_4}=180^0-\widehat{A_1}\) \((1)\)
Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù
=> \(\widehat{B_2}=180^0-\widehat{B_3}\) \((2)\)
\(\widehat{A_1}=\widehat{B_3}\) \((3)\)
Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)
b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh
\(\widehat{A_4}=\widehat{B_2}\) theo câu a
Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh
\(\widehat{A_1}=\widehat{B_3}\) câu a
Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh
\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)
c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù
\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài
Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)
Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù
\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)
Chứng minh:
a) ( a 2 - ab + b 2 ) ( a + b ) = a 3 + b 3 ;
b) ( a 3 + a 2 b + ab 2 + b 3 ) ( a - b ) = a 4 - b 4 ;
Thực hiện phép nhân đa thức với đa thức ở vế trái.
=> VT = VP (đpcm)
cho hình vẽ sau biết đường thẳng c cắt hai đường thẳng a ,b có A1+A3=180 CMR a) A3=B1,A4=B2 b) A1=B1,A2=B2,A3=B3,A4=B4
cho các số dương a,b thỏa mãn : a2+b2 = a3+b3 =a4+b4. tính a+b
\(a^2+b^2=a^3+b^3=a^4+b^4\)
\(\Rightarrow\left(a^3+b^3\right)^2=\left(a^2+b^2\right)\left(a^4+b^4\right)\)
\(\Rightarrow a^6+b^6+2a^3b^3=a^6+b^6+a^2b^4+a^4b^2\)
\(\Rightarrow2a^3b^3=a^2b^2\left(a^2+b^2\right)\)
\(\Rightarrow2ab=a^2+b^2\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a=b\)
Thế vào \(a^2+b^2=a^3+b^3\)
\(\Rightarrow a^2+a^2=a^3+a^3\Rightarrow2a^3=2a^2\Rightarrow a=b=1\)
\(\Rightarrow a+b=2\)
cho hình vẽ sau biết đường thẳng c cắt hai đường thẳng a ,b có A1+A3=180 CMR a) A3=B1,A4=B2 b) A1=B1,A2=B2,A3=B3,A4=B4
cho a,b là 2 số thực phân biệt thỏa mãn a2-3a=b2-3b=1. Tính giá trị của:
a+b ; a2+b2 ; a3+b3 ; a4+b4 ; a5+b5 ; a6+b6
Câu 3: Giả sử công thức =B2+A3 được nhập vào ô B3. Nếu ta sao chép công thức này sang ô B4 thì ô B4 có công thức nào sau đây?
= B1+A2
= B2+A2
= B3+A3
= B3+A4
cho a,b,c thỏa mãn a2+b2+c2=4;a3+b3+c3=8
tính a4+b4+c4
cHO HÌNH VẼ, BIẾT A1=B1
CHỨNG TỎ RẰNG: A)A1=B3 , A4=B2
B)A2=B2 , A1=B2 , A3=B4 , A4=B4
C)A4+B3=180
Tham khảo : Câu hỏi của huy nguyễn - Toán lớp 7 - Học toán với OnlineMath
Cho a, b là 2 số thực phân biệt thỏa mãn a2+4a=b2+4b=1. CMR
a, a+b=-4
b,a3+b3=-76
c, a4+b4=322
a: \(a^2+4a=b^2+4b+1\)
=>\(a^2+4a-b^2-4b=0\)
=>(a-b)(a+b)+4(a-b)=0
=>(a-b)(a+b+4)=0
mà a-b<>0
nên a+b+4=0
=>a+b=-4
b: Đặt \(X=a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-4\right)^3-3ab\cdot\left(-4\right)=-64+12ab\)
\(a^2+4a=1\)
=>\(a^2+4a-1=0\)
=>\(a^2+4a+4-5=0\)
=>\(\left(a+2\right)^2=5\)
=>\(\left[\begin{array}{l}a+2=\sqrt5\\ a+2=-\sqrt5\end{array}\right.\Rightarrow\left[\begin{array}{l}a=\sqrt5-2\\ a=-\sqrt5-2\end{array}\right.\)
\(b^2+4b=1\)
=>\(b^2+4b-1=0\)
=>\(b^2+4b+4-5=0\)
=>\(\left(b+2\right)^2=5\)
=>\(\left[\begin{array}{l}b+2=\sqrt5\\ b+2=-\sqrt5\end{array}\right.\Rightarrow\left[\begin{array}{l}b=\sqrt5-2\\ b=-\sqrt5-2\end{array}\right.\)
Vì a<>b nên sẽ có hai trường hợp sau:
TH1: \(a=\sqrt5-2;b=-\sqrt5-2\)
=>\(ab=\left(\sqrt5-2\right)\left(-\sqrt5-2\right)=-\left(\sqrt5-2\right)\left(\sqrt5+2\right)=-1\)
X=-64+12ab
=-64-12
=-76
TH2: \(a=-\sqrt5-2;b=\sqrt5-2\)
=>\(ab=\left(\sqrt5-2\right)\left(-\sqrt5-2\right)=-\left(\sqrt5-2\right)\left(\sqrt5+2\right)=-1\)
X=-64+12ab
=-64-12
=-76
Vậy: X=-76
c: Đặt \(Y=a^4+b^4\)
\(=\left(a^2+b^2\right)^2-2a^2b^2\)
\(=\left\lbrack\left(a+b\right)^2-2ab\right\rbrack^2-2\cdot\left(ab\right)^2\)
\(=\left\lbrack\left(-4\right)^2-2\cdot\left(-1\right)\right\rbrack^2-2\cdot\left(-1\right)^2=\left\lbrack16+2\right\rbrack^2-2\)
\(=18^2-2\)
=324-2
=322