Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huy nguyễn
Xem chi tiết
Huỳnh Quang Sang
26 tháng 8 2019 lúc 16:44

a A 3 2 4 1 c b B 3 2 4 1

a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh

\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu 

Do đó \(\widehat{A_1}=\widehat{B_3}\)

Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù

=> \(\widehat{A_4}=180^0-\widehat{A_1}\)                                  \((1)\)

Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù

=> \(\widehat{B_2}=180^0-\widehat{B_3}\)                                 \((2)\)

\(\widehat{A_1}=\widehat{B_3}\)                                                      \((3)\)

Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)

b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) theo câu a

Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh

\(\widehat{A_1}=\widehat{B_3}\) câu a

Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)

c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù

\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài

Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)

Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù

\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)

Nguyễn Hoàng Long
26 tháng 8 2019 lúc 16:41

mik chịu thui xin lỗi bạn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 4 2018 lúc 2:08

Thực hiện phép nhân đa thức với đa thức ở vế trái. 

=> VT = VP (đpcm)

TRƯƠNG THÀNH AN
Xem chi tiết

image.png

nguyễn thị nam
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 8 2021 lúc 22:09

\(a^2+b^2=a^3+b^3=a^4+b^4\)

\(\Rightarrow\left(a^3+b^3\right)^2=\left(a^2+b^2\right)\left(a^4+b^4\right)\)

\(\Rightarrow a^6+b^6+2a^3b^3=a^6+b^6+a^2b^4+a^4b^2\)

\(\Rightarrow2a^3b^3=a^2b^2\left(a^2+b^2\right)\)

\(\Rightarrow2ab=a^2+b^2\)

\(\Rightarrow\left(a-b\right)^2=0\)

\(\Rightarrow a=b\)

Thế vào \(a^2+b^2=a^3+b^3\)

\(\Rightarrow a^2+a^2=a^3+a^3\Rightarrow2a^3=2a^2\Rightarrow a=b=1\)

\(\Rightarrow a+b=2\)

TRƯƠNG THÀNH AN
Xem chi tiết

image.png

TrịnhAnhKiệt
Xem chi tiết
Tuấn anh
Xem chi tiết
Lee Hà
9 tháng 12 2021 lúc 10:19

= B3+A4

Hoàng Hà Tiên
Xem chi tiết
Nguyễn Thi  An Na
Xem chi tiết
Huỳnh Quang Sang
14 tháng 9 2019 lúc 17:07

Tham khảo : Câu hỏi của huy nguyễn - Toán lớp 7 - Học toán với OnlineMath

TrịnhAnhKiệt
Xem chi tiết

a: \(a^2+4a=b^2+4b+1\)

=>\(a^2+4a-b^2-4b=0\)

=>(a-b)(a+b)+4(a-b)=0

=>(a-b)(a+b+4)=0

mà a-b<>0

nên a+b+4=0

=>a+b=-4

b: Đặt \(X=a^3+b^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(-4\right)^3-3ab\cdot\left(-4\right)=-64+12ab\)

\(a^2+4a=1\)

=>\(a^2+4a-1=0\)

=>\(a^2+4a+4-5=0\)

=>\(\left(a+2\right)^2=5\)

=>\(\left[\begin{array}{l}a+2=\sqrt5\\ a+2=-\sqrt5\end{array}\right.\Rightarrow\left[\begin{array}{l}a=\sqrt5-2\\ a=-\sqrt5-2\end{array}\right.\)


\(b^2+4b=1\)

=>\(b^2+4b-1=0\)

=>\(b^2+4b+4-5=0\)

=>\(\left(b+2\right)^2=5\)

=>\(\left[\begin{array}{l}b+2=\sqrt5\\ b+2=-\sqrt5\end{array}\right.\Rightarrow\left[\begin{array}{l}b=\sqrt5-2\\ b=-\sqrt5-2\end{array}\right.\)

Vì a<>b nên sẽ có hai trường hợp sau:

TH1: \(a=\sqrt5-2;b=-\sqrt5-2\)

=>\(ab=\left(\sqrt5-2\right)\left(-\sqrt5-2\right)=-\left(\sqrt5-2\right)\left(\sqrt5+2\right)=-1\)

X=-64+12ab

=-64-12

=-76

TH2: \(a=-\sqrt5-2;b=\sqrt5-2\)

=>\(ab=\left(\sqrt5-2\right)\left(-\sqrt5-2\right)=-\left(\sqrt5-2\right)\left(\sqrt5+2\right)=-1\)

X=-64+12ab

=-64-12

=-76

Vậy: X=-76

c: Đặt \(Y=a^4+b^4\)

\(=\left(a^2+b^2\right)^2-2a^2b^2\)

\(=\left\lbrack\left(a+b\right)^2-2ab\right\rbrack^2-2\cdot\left(ab\right)^2\)

\(=\left\lbrack\left(-4\right)^2-2\cdot\left(-1\right)\right\rbrack^2-2\cdot\left(-1\right)^2=\left\lbrack16+2\right\rbrack^2-2\)

\(=18^2-2\)

=324-2

=322