\(a+b=a^3+b^3=1\)
\(\Leftrightarrow a+b=\left(a+b\right)\left(a^2-ab+b^2\right)=1\)
\(\Leftrightarrow a^2-ab+b^2=1\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)-3ab=1\)
\(\Leftrightarrow\left(a+b\right)^2-3ab=1\)
\(\Leftrightarrow1-3ab=1\)
\(\Rightarrow ab=0\)
Ta có : \(\left(a+b\right)^2=1\)
\(\Leftrightarrow a^2+b^2+2ab=1\)
\(\Rightarrow a^2+b^2=1\) (1)
\(\Leftrightarrow\left(a^2+b^2\right)^2=a^4+b^4+2\left(ab\right)^2=1\)
\(\Rightarrow a^4+b^4=1\)(2)
Từ (1) ; (2) => đpcm