Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{1}{x}\) tại điểm N (1; 1)
Viết phương trình tiếp tuyến của đồ thị hàm số y = 4 x − 1 tại điểm có hoành độ x=-1.
A. y = − x + 3
B. y = − x − 3
C. y = x − 3
D. y = − x + 1
Cho hàm số y = x - 1 x + 1 . Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = – 2.
Cho hàm số y=f(x)=-x3+x2-1 có đồ thị (C):
Viết phương trình tiếp tuyến với đồ thị của hàm số tại điểm có hoành độ bằng 2
f'(x)=y'=-3x^2+2x
f'(2)=-3*2^2+2*2=-3*4+4=-8
f(2)=-2^3+2^2-1=-8-1+4=-9+4=-5
y=f(2)+f'(2)(x-2)
=-5+(-8)(x-2)
=-8x+16-5
=-8x+11
Viết phương trình tiếp tuyến của đồ thị hàm số:
\(y=\dfrac{-x+2}{x+1}\)
a, Tại giao điểm của đồ thị vs trục hoành
b, Tại giao điểm của đồ thị vs trục tung
c, Hệ số góc \(k=-3\)
Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm
Ta có: y' \(=\dfrac{-3}{\left(x+1\right)^2}\)
k=f'\(\left(x_0\right)\)\(\Rightarrow-3=\dfrac{-3}{\left(x_0+1\right)^2}\Leftrightarrow\left(x_0+1\right)^2=1\)\(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-2\end{matrix}\right.\)
Với \(x_0=0\) ta có pt tiếp tuyến:
\(d:3x+y-2=0\)
Với \(x_0=-2\) ta có pt tiếp tuyến:
\(d:3x+y+10=0\)
a: Tọa độ giao điểm của (d) với trục Ox là:
y=0 và (-x+2)=0
=>x=2 và y=0
\(y'=\dfrac{\left(-x+2\right)'\left(x+1\right)-\left(-x+2\right)\left(x+1\right)'}{\left(x+1\right)^2}\)
\(=\dfrac{\left(-\left(x+1\right)+x-2\right)}{\left(x+1\right)^2}=\dfrac{-3}{\left(x+1\right)^2}\)
Khi x=2 thì y'=-3/(2+1)^2=-3/9=-1/3
y-f(x0)=f'(x0)(x-x0)
=>y-0=-1/3(x-2)
=>y=-1/3x+2/3
b: Tọa độ giao của (d) với trục Oy là;
x=0 và y=(-0+2)/(0+1)=2
Khi x=0 thì \(y'=\dfrac{-3}{\left(0+1\right)^2}=-3\)
y-f(x0)=f'(x0)(x-x0)
=>y-2=-3(x-0)
=>y=-3x+2
Cho hàm số y = x - 2 x + 1 . Viết phương trình tiếp tuyến của đồ thị hàm số trên tại điểm có hoành độ x 0 = 0
A. y = 3 x - 2
B. y = - 3 x - 2
C. y = 3 x - 3
D. y = 3 x + 2
Cho hàm số y = 2 2 - x
Tìm giao điểm của (C ) và đồ thị hàm số y= x 2 +1 . Viết phương trình tiếp tuyến của (C ) tại mỗi giao điểm.
Phương trình hoành độ giao điểm của hai đường cong :
Phương trình (*) tương đương : 2 = 2x2 + 2 – x3 – x
⇔ x3 – 2x2 + x = 0 ( đều thỏa mãn khác 2).
Vậy tọa độ giao điểm của hai đường cong là A(0 ; 1) và B(1 ; 2)
+ Phương trình tiếp tuyến tại A là
+ Phương trình tiếp tuyến tại điểm B(1 ; 2) là :
y = y’(1). (x – 1) + 2 = 2(x – 1)+ 2
Hay y = 2x
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} + 3{x^2} - 1\) tại điểm có hoành độ bằng 1.
Ta có: \(y'=3x^2+6x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=9\\y\left(1\right)=3\end{matrix}\right.\)
Phương trình tiếp tuyến là: \(y=9\left(x-1\right)+3=9x-6\)
Viết phương trình tiếp tuyến của đồ thị hàm số y = x3 + 2x2 + x - 1 tại điểm M có hoành độ bằng 1
Đặt \(y=f(x)=x^3+2x^2+x-1 \)
\(f'(x)=3x^2+4x+1\)
Phương trình tiếp tuyến của đồ thị hàm số y tại M là:
\(y=f'(x_m)(x-x_m)+f(x_m)=f'(1)(x-1)+f(1)=8(x-1)+3=8x-5 \)
Cho đồ thị hàm số C : y = − 2 x + 3 x − 1 . Viết phương trình tiếp tuyến của đồ thị (C) tại
giao điểm của (C) và đường thẳng y = x − 3 .
A. y = − x + 3 v à y = − x − 1
B. y = − x − 3 v à y = − x + 1
C. y = x − 3 v à y = x + 1
D. y = − x + 3 v à y = − x + 1
Đáp án B
Tọa độ giao điểm của (C) và đường thẳng y = x − 3 là nghiệm của hệ:
y = − 2 x + 3 x − 1 y = x − 3 ⇔ x = 2 y = − 1 x = 0 y = − 3 ⇒ A ( 2 ; − 1 ) B ( 0 ; − 3 )
y ' = − 1 x − 1 2
Phương trình tiếp tuyến với ( C) tại A ( 2 ; − 1 ) là:
y = − 1 2 − 1 2 ( x − 2 ) − 1 = − x + 1
Phương trình tiếp tuyến với ( C) tại B ( 0 ; − 3 ) là:
y = − 1 0 − 1 2 ( x − 0 ) − 3 = − x − 3