Rút gọn:
a, A=\(\dfrac{2^6.9^2}{6^4.8}\)
b, B=\(\dfrac{2^{13}.3^7}{2^{15}.3^2.9^2}\)
Rút gọn:
a)\(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}\)
b)\(\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}\)
c)\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right)\div\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d)\(\sqrt{2}+\dfrac{1}{\sqrt{5+2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)
e)\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\times\left(\sqrt{6}+11\right)\)
Lm nhanh giúp mk nhé, mk đang cần gấp!
Bạn chia nhỏ ra để nhận được câu tl sớm nhất nhé!Bạn đặt câu hỏi free mà để dày cộp như này khum ai dám làm =(((
Rút gọn:
a)\(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
b) \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
Câu 1: Rút gọn các biểu thức sau:
C = \(\dfrac{8^2.9^5}{3^9.4^3}\)
D = \(\dfrac{81^6.9^5}{27^7.3^{11}}\)
F = \(\dfrac{8^{15}.25^7}{125^5.2^{47}}\)
G = \(\dfrac{10^2.5^3}{8.25^2}\)
\(C=\dfrac{2^6\cdot3^{10}}{3^9\cdot2^6}=3\\ D=\dfrac{3^{24}\cdot3^{10}}{3^{21}\cdot3^{11}}=\dfrac{3^{34}}{3^{32}}=3^2=9\\ F=\dfrac{2^{45}\cdot5^{14}}{5^{15}\cdot2^{47}}=\dfrac{1}{2^2\cdot5}=\dfrac{1}{20}\\ G=\dfrac{2^2\cdot5^2\cdot5^3}{2^3\cdot5^4}=\dfrac{1\cdot5}{2}=\dfrac{5}{2}\)
C=3
D=9
F=1/20
G=5/2
Em ko giải chi tiết vì nó lâu
Mong thông cảm!
C= \(\dfrac{8^2.9^5}{3^9.4^3}\)
= \(\dfrac{\left(2^3\right)^2.\left(3^2\right)^5}{3^9.\left(2^2\right)^3}\)
= \(\dfrac{2^6.3^{10}}{3^9.2^6}\)
= \(\dfrac{3^1}{1}\)
= \(\dfrac{3}{1}\)
Rút gọn:
a) A= \(\dfrac{x}{x-y}+\dfrac{2y^2}{x^2-y^2}-\dfrac{x}{x+y}\)
b) B= \(\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}\)
c) C= \(\dfrac{5}{x+1}-\dfrac{10}{-x^2+x-1}-\dfrac{15}{x^3+1}\)
a) \(\dfrac{x}{x-y}+\dfrac{2y^2}{x^2-y^2}-\dfrac{x}{x+y}=\dfrac{x\left(x+y\right)+2y^2-x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{x^2+xy+2y^2-x^2+xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y^2+2xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y}{x-y}\)
b) \(B=\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}=\dfrac{x\left(x+2\right)-4x-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c) \(\dfrac{5}{x+1}-\dfrac{10}{-x^2+x-1}-\dfrac{15}{x^3+1}=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{x^3+1}=\dfrac{5\left(x^2-x+1\right)+10\left(x+1\right)-15}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x}{x^2-x+1}\)
Rút gọn:
a) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
b) \(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
c) \(\dfrac{3}{2\sqrt{3}+3}+\dfrac{3}{2\sqrt{3}-3}\)
d) \(\sqrt{\left(\sqrt{3}+4\right)\sqrt{19-8\sqrt{3}}+3}\)
e) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
a: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
b: \(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)
\(=3+\sqrt{5}+3-\sqrt{5}=6\)
c: \(\dfrac{3}{2\sqrt{3}+3}+\dfrac{3}{2\sqrt{3}-3}\)
\(=\dfrac{3\left(2\sqrt{3}-3\right)+3\left(2\sqrt{3}+3\right)}{12-9}\)
\(=2\sqrt{3}-3+2\sqrt{3}+3=4\sqrt{3}\)
d: \(\sqrt{\left(\sqrt{3}+4\right)\cdot\sqrt{19-8\sqrt{3}}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\left(4-\sqrt{3}\right)+3}\)
\(=\sqrt{16-3+3}=\sqrt{16}=4\)
e: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{3}\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)
Rút gọn:
A=\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)
B=\(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(B=\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(B=\left|\sqrt{5}+2\right|+\left|\sqrt{5}-2\right|\)
\(B=\sqrt{5}+2+\sqrt{5}-2\)
\(B=2\sqrt{5}\)
\(A=\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)
\(A=\left(\dfrac{\sqrt{12}-\sqrt{6}}{2\sqrt{2}-2}-\dfrac{6\sqrt{6}}{3}\right).\dfrac{1}{\sqrt{6}}\)
\(A=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)
\(A=\left(\sqrt{6}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)
\(A=-\sqrt{6}.\dfrac{1}{\sqrt{6}}\)
\(A=-1\)
BÀI 2 TÍNH :
A = \(\dfrac{6^3+3.6^2+3^3}{13}\)
B = \(\dfrac{4^6.9^5+6^9.120}{8^4-3^{12}.6^{11}}\)
\(A=\dfrac{6^3+3\cdot6^2+3^3}{13}\)
\(=\dfrac{3^3\cdot8+3^3\cdot4+3^3}{13}\)
=27
* Rút gọn biểu thức
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
- Rút gọn biểu thức
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
a) Ta có: \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}\)
\(=10\sqrt{5}\)
b) Ta có: \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
\(=3\left(2-\sqrt{3}\right)+4+\sqrt{3}+2\sqrt{3}\)
\(=6-2\sqrt{3}+4+3\sqrt{3}\)
\(=10+\sqrt{3}\)
c) Ta có: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=7-5=2
d) Ta có: \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
\(=2+\sqrt{3}-5+\sqrt{3}\)
\(=-3+2\sqrt{3}\)
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
\(=2.4\sqrt{5}+3.3\sqrt{5}-7\sqrt{5}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}\)
\(=10\sqrt{5}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
\(=\dfrac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\dfrac{13\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}+\dfrac{6\sqrt{3}}{\sqrt{3}.\sqrt{3}}\)
\(=\dfrac{3\left(2-\sqrt{3}\right)}{4-3}+\dfrac{13\left(4+\sqrt{3}\right)}{16-3}+\dfrac{6\sqrt{3}}{3}\)
\(=3\left(2-\sqrt{3}\right)+\dfrac{13\left(4+\sqrt{3}\right)}{13}+2\sqrt{3}\)
\(=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}\)
\(=10\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(\sqrt{7}+\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=7-5=2\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
\(=\left|2+\sqrt{3}\right|-\sqrt{5^2-2.5.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\left|2+\sqrt{3}\right|-\left(5-\sqrt{3}\right)^2\)
\(=\left|2+\sqrt{3}\right|-\left|5-\sqrt{3}\right|\)
\(=2+\sqrt{3}-\left(5-\sqrt{3}\right)\) (vì \(\left|2+\sqrt{3}\right|\ge0,\left|5-\sqrt{3}\right|\ge0\))
\(=2+\sqrt{3}-5+\sqrt{3}\)
\(=2\sqrt{3}-3\)