Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Long
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 21:11

3: \(\Leftrightarrow a-15=0\)

hay a=15

Vũ Phương Nhi
Xem chi tiết
blua
10 tháng 8 2023 lúc 21:00

Bài 2 có lỗi không bạn?
q+qp> 2 mà đây là 1 số nguyên tố nên đây là số lẻ
 mà dù q chẵn hay lẻ thì q+qp chẵn (vô lý)

Vũ Phương Nhi
Xem chi tiết

Bài 2:

a: \(p^2-2q^2=17\)

=>\(2q^2=p^2-17\)

=>\(q^2=\frac{p^2-17}{2}\)

=>\(q^2\) ⋮2

=>q⋮2

mà q là số nguyên tố

nên q=2

Ta có: \(p^2-2q^2=17\)

=>\(p^2=2q^2+17=2\cdot2^2+17=25=5^2\)

=>p=5(nhận)

b: Đặt \(A=q+q^{p}\)

p là số nguyên tố nên p>1

=>p-1>0

Ta có: \(A=q+q^{p}\)

\(=q\left(q^{p-1}+1\right)\)

Để A là số nguyên tố thì q là số nguyên tố và \(q^{p-1}+1=1\)

=>\(q^{p-1}=0\) và q là số nguyên tố

\(q^{p-1}<>0\) \(\forall\) q

nên (q;p)∈∅

Vũ Phương Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 19:46

1:

a: =>7(x+1)=72-16=56

=>x+1=8

=>x=7

b: (2x-1)^3=4^12:16=4^10

=>\(2x-1=\sqrt[3]{4^{10}}\)

=>\(2x=1+\sqrt[3]{4^{10}}\)

=>\(x=\dfrac{1+\sqrt[3]{4^{10}}}{2}\)(loại)

c: \(\Leftrightarrow6x-2+7⋮3x-1\)

=>3x-1 thuộc Ư(7)

mà x là số tự nhiên

nên 3x-1 thuộc {-1}

=>x=0

d: x^2+7 chia hết cho 2x^2+1

=>2x^2+14 chia hết cho 2x^2+1

=>2x^2+1+13 chia hết cho 2x^2+1

=>2x^2+1 thuộc Ư(13)

=>2x^2+1=1(Vì x là số tự nhiên)

=>x=0

oOo_Duy Anh Nguyễn_oOo
Xem chi tiết
Nguyệt
26 tháng 11 2018 lúc 18:10

b)\(\frac{9x^4-6x^3+15x^2+2x+1}{3x^2-2x+5}=\frac{3x^2.\left(3x^2-2x+5\right)+2x+1}{3x^2-2x+5}=3x^2+\frac{2x+1}{3x^2-2x+5}\)

=> đa thức dư trong phép chia là 2x+1

\(\frac{x^3+2x^2-3x+9}{x+3}=\frac{x^3+9x^2+27x+27-7x^2-30x-18}{x+3}=\frac{\left(x+3\right)^3-7x^2-30x-18}{x+3}\)

\(\left(x+3\right)^2-\frac{7x^2+21x+9x+18}{x+3}=\left(x+3\right)^2-\frac{7x.\left(x+3\right)+9.\left(x+3\right)-9}{x+3}\)

\(=\left(x+3\right)^2-\frac{\left(7x+9\right).\left(x+3\right)-9}{x+3}=\left(x+3\right)^2-\left(7x+9\right)-\frac{9}{x+3}\)

=> đa thức dư trong phép chia là 9

p/s: t mới lớp 7_sai sót mong bỏ qua :>

Phạm Tuấn Long
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
22 tháng 7 2018 lúc 18:19

Bài I :

1 ) \(3x\left(x-5\right)-\left(3x+2\right)\left(3x-2\right)=31\)

\(\Leftrightarrow3x^2-15x-9x^2+4-31=0\)

\(\Leftrightarrow-6x^2-15x-27=0\)

Phương trình vô nghiệm .

2 )

\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)

\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=16\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

Bài II :

\(B=n\left(n+5\right)-\left(n-3\right)\left(n+20\right)\)

\(=n^2+5n-n^2-17n+60\)

\(=-12n+60\)

\(=-12\left(n-5\right)\)

\(-12\) chia hết cho 6 \(\Rightarrow-12\left(n-5\right)\) chia hết cho 6 .

Vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+20\right)\) chia hết cho 6 (đpcm)

Cô Nàng Bạch Dương
Xem chi tiết
Vũ Phương Nhi
Xem chi tiết

Bài 2:

a: \(p^2-2q^2=17\)

=>\(2q^2=p^2-17\)

=>\(q^2=\frac{p^2-17}{2}\)

=>\(q^2\) ⋮2

=>q⋮2

mà q là số nguyên tố

nên q=2

Ta có: \(p^2-2q^2=17\)

=>\(p^2=2q^2+17=2\cdot2^2+17=25=5^2\)

=>p=5(nhận)

b: Đặt \(A=q+q^{p}\)

p là số nguyên tố nên p>1

=>p-1>0

Ta có: \(A=q+q^{p}\)

\(=q\left(q^{p-1}+1\right)\)

Để A là số nguyên tố thì q là số nguyên tố và \(q^{p-1}+1=1\)

=>\(q^{p-1}=0\) và q là số nguyên tố

\(q^{p-1}<>0\) \(\forall\) q

nên (q;p)∈∅

Yến Chử
Xem chi tiết

em chưa cho đa thức f(x) và g(x) nà

Nguyễn Lê Phước Thịnh
29 tháng 3 2023 lúc 22:57

a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)

\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)

\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)

\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)

Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0

=>a=-6 và b=-14

b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)

\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)

Để f(x) chia hết g(x) thì a-5=0

=>a=5