Rút gọn các phân thức
1)\(\frac{4a^2-b^2}{4a^2-4ab+b^2}\)
2) \(\frac{x^2+7x+6}{x^2-1}\)
Rút gọn các biểu thức sau:
a) A = 4 a + b a 2 − 4 ab + 4 a − b a 2 + 4 ab . a 2 − 16 b 2 a 2 + b 2 với x ≠ 0 và x ≠ ± 3
b) B = t t + 2 + 1 : 1 − 3 t 2 4 − t 2 với t ≠ ± 1 và t ≠ ± 2
a) Ta có A = 8 ( a 2 + b 2 ) a ( a 2 − 16 b 2 ) . a 2 − 16 b 2 a 2 + b 2 = 8 a
b) Ta có B = 2 t + 2 t + 2 . 4 − t 2 4 − 4 t 2 = 2 − t 2 − 2 t
Rút gọn : \(\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(1+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(1+\frac{4a^2+b^2}{4a^2-b^2}\right)\left(ĐK:2a\ne\pm b\right)\)
\(=\left(\frac{1}{2a-b}-\frac{3b}{\left(2b-b\right)\left(2a+b\right)}-\frac{2}{2a+b}\right):\frac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)
\(=\frac{2a+b-3b-2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\cdot\frac{\left(2a-b\right)\left(2a+b\right)}{8a^2}\)
\(=\frac{2a+b-3b-4a+2b}{8a^2}=\frac{-2a}{8a^2}=-\frac{1}{4a}\)
Rút gọn biểu thức
a,\(A=\frac{2}{x^2-y^2}\sqrt{\frac{3x^2+6xy+3y^2}{4}}\)
b, \(B=\frac{1}{2a-1}\sqrt{5a^4\left(1-4a+4a^2\right)}\)
\(\frac{\sqrt{3x^2+6xy+3y^2}}{x^2-y^2}\)
<=>\(\frac{\sqrt{3.\left(x+y\right)^2}}{\left(x-y\right).\left(x+y\right)}\)
<=>\(\frac{\sqrt{3}\left|x+y\right|}{\left(x-y\right).\left(x+y\right)}.\)
<=>\(\frac{\sqrt{3}}{x-y}\)
Cho \(A=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
a) Rút gọn A.
b) Tình giá trị của A khi \(a=\frac{1}{3};b=2\)
a) \(A=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\left(\frac{2}{2a-b}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\left(\frac{-2\left(b+2a\right)}{\left(b-2a\right)\left(b+2a\right)}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4\left(b-2a\right)}{\left(2a+b\right)\left(b-2a\right)}\right):\left(\frac{a\left(4a^2-b^2\right)}{4a^2-b^2}+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\frac{-2b-4a+6b-4b+8a}{\left(b-2a\right)\left(b+2a\right)}:\frac{4a^3-ab^2+4a^2+b^2}{4a^2-b^2}\)
\(=\frac{4a}{\left(b-2a\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)
\(=\frac{-4a}{\left(2a-b\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)
\(=.\frac{-4a}{4a^3-ab^2+4a^2+b^2}\)
b) ĐKXĐ: \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)
Ta thấy \(a=\frac{1}{3};b=2\)thỏa mãn điều kiện \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)nên thay vào A ta được:
bạn thay vào tự tính nhé mà cái phần rút gọn bạn vừa làm vừa check giùm bài mik nhé =)) sợ sai
\(A=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{2\sqrt{x}}{\sqrt{x}-2}-\frac{3x+4}{x-4}\) với \(x\ge 0\);x#4
a,Rút gọn A
b,Tìm giá trị của x để A=\(\frac{1}{2}\)
a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\)
\(=\dfrac{2\sqrt{x}-4}{x-4}=\dfrac{2}{\sqrt{x}+2}\)
b: A=1/2
=>\(\sqrt{x}+2=4\)
=>\(\sqrt{x}=2\)
=>x=4(loại)
\(\)Bài 1: Rút gọn:
M= (\(\dfrac{2a}{2a+b}\)-\(\dfrac{4a^2}{4a^2+4ab+b^2}\)):(\(\dfrac{2a}{4a^2-b^2}+\dfrac{1}{b-2a}\))
Bài 2: Cho biểu thức:
P=(\(\dfrac{a+6}{3a+9}-\dfrac{1}{a+3}\)):\(\dfrac{a+2}{27a}\)
a) Tìm ĐKXĐ và rút gọn
b) Tính giá trị của P tại a=1
2.
\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)
ĐKXĐ là :
\(a\ne0;-3;-2\)
Vs a = 1 ta có:
=> P=3
1.
\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)
B1 Rút gọn
a)\(\sqrt{6+2\sqrt{5}}-\sqrt{29-12\sqrt{2}}\)
b)\(\frac{2}{x^2y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\left(x\ge0;y\ge0;x\ne y\right)\)
c)\(\frac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\left(a>\frac{1}{2}\right)\)
B2 giải pt
\(\sqrt{3-x}+3\sqrt{12-4x}-5\sqrt{48-16x}=-39\)
HELP ME!!!!
rút gọn biểu thức:
A=(x +2)(x-4)+(x+1)(x-6)
B=(2a - b)(4a^2 + 2ab + b^2)
C=(2 + x)(2 - x)(x + 4)
a: Ta có: \(A=\left(x+2\right)\left(x-4\right)+\left(x+1\right)\left(x-6\right)\)
\(=x^2-4x+2x-8+x^2-6x+x-6\)
\(=2x^2-7x-14\)
b: \(B=\left(2a-b\right)\left(4a^2+2ab+b^2\right)=8a^3-b^3\)
c: \(C=\left(2+x\right)\left(2-x\right)\left(x+4\right)\)
\(=\left(4-x^2\right)\left(x+4\right)\)
\(=4x+16-x^3-4x^2\)
Rút gọn: \(\frac{a}{x^2+ax}+\frac{a}{x^2+3ax+2a^2}+\frac{a}{x^2+5ax+6a^2}+\frac{a}{x^2+7ax+12a^2}+\frac{a}{x+4a}\)