cmr :nếu n + 4n chia hết cho 13 thì 10n + n chia hết cho 13 và ngược lại
Cho
M=15a-23b
N=2a-3b
CMR nếu M chia hết cho 13 thì N chia hết cho 13 và ngược lại(tức nếu N chia hết cho 13 thì M cũng chia hết cho 13)
Ta có : a,b \(\in\) Z
15a - 23b
=(13+2)a + (26-3)b
=13a + 2a + 26b - 3b
=13(a+2b)+(2a-3b)
=13(a+2b)+B
Ta thấy : 13(a+2b)\(⋮\)13
Theo đầu bài : A\(⋮\)13
=>2a-3b\(⋮\)13
hay B\(⋮\)13
Nếu M⋮13 và 13a-26b⋮13
⇒M-(13a-26b)⋮13
⇒2a-3b⋮13
N⋮13
Nếu N⋮13 và 13a-26b⋮13
⇒N+(13a-26b)⋮13
⇒15a-23b⋮13
M⋮13
Cho biểu thức:
A= 15x-23y
B= 2x+3y
CMR: nếu A chia hết cho 13 thì B cũng chia hết cho 13 và ngược lại B chia hết cho 13 thì A cũng chia hết cho 13 ( với x, y thuộc Z)
x,y thuộc Z
A= (13+2)x -(26-3)y = 13x + 2x -26y + 3y =13(x-2y) + (2x+3y) = 13(x-2y) + B
A chia hết 13 => (2x+3y) chia hết 13 vì 13(x-2y) chắc chắn chia hết 13=> B chia hết 13
ngược lại cũng đúng.
Bài làm: ( Toán lớp 6 ).
x , y đều thuộc Z.
A = ( 13 + 2 )x - ( 26 - 3)y.
= 13x + 2x - 26y + 3y.
= 13( x - 2y ) + ( 2x + 3y ) = 13 ( x - 2y ) + B.
Vì A chia hết cho 13.
Suy ra: ( 2x + 3y ) : 13.
Vì 13( x - 2y ) : 13.
Suy ra: B chia hết cho 13.
Học tốt #
Biết m+ 4n chia hết cho 13 chứng tỏ rằng 10m + n chia hết cho 10 và ngược lại chia hểt cho 17
cho các biểu thức : A=11x+29y và B=2x-3y. Chứng minh rằng nếu x,y là số nguyên và A chia hết cho 13 thì B chia hết cho 13. Ngược lại nếu B chia hết cho 13 thì A chia hết cho 13
A chia hết cho 13
A+B=11x+29y+2x-3y=13x-26y chia hết cho 13
=>B chia hết cho 13
B chia hết cho 13
A+B chia hết cho 13
=>A chia hết cho 13
Chứng tỏ rằng: nếu a+4b chia hết cho 13 thì 10a + b chia hết cho 13 ( a, b thuộc N) điều ngược lại có đúng ko
10a+b\(⋮\)13
=> 4(10a+b)\(⋮\)13
=> 40a+4b\(⋮\)13
=> a+4b+39a\(⋮\)13
Mà 39a\(⋮\)13 nên a+4b\(⋮\)13
Vậy nếu 10a+b\(⋮\)13 thì a+4b\(⋮\)13
+) Chứng minh chiều xuối :
Cho a + 4b ⋮ 13 ; CMR : 10a + b ⋮ 13
Vì a + 4b ⋮ 13 => 10 . ( a + 4b ) ⋮ 13 => 10a + 40b ⋮ 13
Xét hiệu ( 10a + 40b ) - ( 10a + b ) = 39b ⋮ 13
\(\text{Vì }\hept{\begin{cases}10a+40b⋮13\\\left(10a+40b\right)-\left(10a+b\right)⋮13\end{cases}}\)
=> 10a + b ⋮ 13 (1)
+) Chứng minh chiều ngược :
Cho 10a + b ⋮ 13 ; CMR : a + 4b ⋮ 13
Vì 10a + b ⋮ 13 => 4 . ( 10b + a ) ⋮ 13 => 40a + 4b ⋮ 13
Xét hiệu : ( 40a + 4b ) - ( a + 4b ) = 39a ⋮ 13
\(\text{Vì }\hept{\begin{cases}40a + 4b ⋮ 13\\\left(40a+4b\right)-\left(a+4b\right)⋮13\end{cases}}\)
=> a + 4b ⋮ 13 (2)
Từ (1) và (2) => a + 4b ⋮ 13 <=> 10a + b ⋮ 13
CMR: m+4n chia hết cho 13 <=>10m+n chia hết cho 13 , mọi m,n thuộc N
A =m+4n
B =10m+n
10A - B = 10m +40n -10m -n =39n chia hết cho 13
+Nếu A =m+4n chia hết cho 13 => 10A chia hết cho 13
=> B chia hết cho 13 ( tính chất chia hết của 1 tổng)
+Nếu B = 10m +n chia hết cho 13 => 10A chia hết cho 13 ; vì 10 không chia hết cho 13 => A chia hết cho 13
Vậy A chia hết cho 13 \(\Leftrightarrow\) B chia hết cho 13
CMR : m+4n chia hết cho 13 suy ra 10m + n chia hết cho 13 mọi m,n thuộc N
Gọi m+4n là x;10m+n la y
3x+y=3(m+4n)+10m+n=(3m+12n+10m+n)=(13m+13n) chia hết cho 13
Mà 3x chia hết cho 13
=>y chia hết cho 13
Vậy nếu m+4n chia hết cho 13 suy ra 10m+n chia hết cho 13 với mọi n,m thuộc N
CMR: m+4n chia hết cho 13<=>10m+n chia hết cho 13 với mọi m,n thuộc N
m+4n :13
m+4n+39m : 13
40m+4n : 13
4(10m+n) : 13
Vài (4;13)=1
=> 10m+n : 13
cmr
2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17
a+4b chia hết cho 13 thì 10a+b chia hết cho 13
3a+2b chia hết cho 17 thì 10a+b chia hết cho 17
a-5b chia hết cho 17 thì 10a+b chia hết cho 17
m+4n chia hết cho 13 thì 10m+n chia hết cho 13