các bạn giảng chi tiết giúp mình nha 103)cho pt 2x-y =3 hãy tìm 1 pt cùng với pt trên lập thành 1 hệ pt
a) có 1 nghiệm duy nhất
b)có vô số nghiệm
các bạn giảng chi tiết hết sức giúp mình nha 100)tìm giá trị của a để hệ PT x+2y=5 cùng ax+3y=a
a)có 1 nghiệm duy nhất
b)vô nghiệm
Cho hệ pt: \(\left\{{}\begin{matrix}x+2y=5\\ax+3y=a\end{matrix}\right.\) (1)
(1) vô nghiệm ⇔ \(\dfrac{1}{a}\) = \(\dfrac{2}{3}\) \(\ne\) \(\dfrac{5}{a}\)
⇒ a = \(\dfrac{3}{2}\)
(1) có nghiệm duy nhất ⇔ \(\dfrac{1}{a}\) \(\ne\) \(\dfrac{2}{3}\) ⇒ \(a\) \(\ne\) 1 : \(\dfrac{2}{3}\) ⇒ \(a\ne\) \(\dfrac{3}{2}\)
các bạn giải chi tiết giúp mình nha 102)cho hệ pt mx+4y=10 cùng 6x+3y=m tìm giá trị của m để hệ pt
a)có NGHIỆM DUY NHẤT
b)vô nghiệm
c)vô số nghiệm☘
các bạn giảng chi tiết hết mức nha 101)cho hệ pt x-3y =m cùng 2x-6y=8 tìm giá trị của m để hệ pt VÔ NGHIỆM ,VÔ SỐ NGHIỆM☘
Kiến thức cần nhớ: \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\) hệ pt vô nghiệm ⇔\(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\)
hệ pt có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)
\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\) (1) ta có: a = 1; b = -3; c = m và a' = 2; b' = - 6; c' = 8
Hệ (1) vô nghiệm ⇔ \(\dfrac{1}{2}\) = \(\dfrac{-3}{-6}\) \(\ne\) \(\dfrac{m}{8}\)
⇔ \(\dfrac{1}{2}\) \(\ne\) \(\dfrac{m}{8}\)
⇔ m \(\ne\) 4
Hệ (1) có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{1}{2}=\dfrac{-3}{-6}=\dfrac{m}{8}\) ⇔ \(\dfrac{1}{2}\) = \(\dfrac{m}{8}\) ⇔ m = 8\(\times\)\(\dfrac{1}{2}\) = 4
Kết luận:
+ hệ phương trình đã cho vô nghiệm khi m \(\ne\) 4 và có vô số nghiệm khi m = 4
\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\)
\(D=-6+6=0\)
\(D_x=-6m+24\)
\(D_y=8-2m\)
Để hệ phương trình vô nghiệm
\(\Leftrightarrow D_x\ne0\cap D_y\ne0\left(D=0\right)\)
\(\Leftrightarrow-6m+24\ne0\cap8-2m\ne0\)
\(\Leftrightarrow m\ne4\)
Để hệ phương trình vô số nghiệm
\(\Leftrightarrow D=D_x=D_y=0\)
\(\Leftrightarrow m=4\) ( vì D luôn bằng 0)
Bài 1: Cho pt: 2(m-1) x + 3 = 2m - 5 (1)
a) tìm m để pt (1) là pt bậc nhất một ẩn
b) Tìm m để pt vô nghiệm
c) Tìm m để pt có nghiệm duy nhất
d) Tìm m để pt vô số nghiệm %3D
e) Với giá trị nào của m thì pt (1) tương đương với pt 2x+5 = 3(x+2)-1
giúp mk vs ạ, mk cam tạ
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
Cho hệ pt: ax+ y= 2a X-a= 1-ay 1/ a=2 giải hệ pt 2/ tìm a để a/ hệ có 1 nghiệm duy nhất, vô số nghiệm, vô nghiệm B/ hệ có nghiệm nguyên
a: \(\left\{{}\begin{matrix}ax+y=2a\\x-a=1-ay\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}ax+y=2a\\x+ay=a+1\end{matrix}\right.\)
Khi a=2 thì hệ sẽ là \(\left\{{}\begin{matrix}2x+y=4\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=6\end{matrix}\right.\)
=>-3y=-2 và x+2y=3
=>y=2/3 và x=3-2y=3-4/3=5/3
2:
a: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{a}{1}< >\dfrac{1}{a}\)
=>a^2<>1
=>a<>1 và a<>-1
Để hệ có vô số nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}=\dfrac{2a}{a+1}\)
=>a^2=1 và a^2+a=2a
=>a=1
Để hệ vô nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}< >\dfrac{2a}{a+1}\)
=>a^2=1 và a^2+a<>2a
=>a=-1
Cho hệ pt: x+y=1 và mx+2y=m
a) với m=3 giải hệ pt
b)tìm m để hệ pt có 1 nghiệm duy nhất, có voi số nghiệm
a) Thay m=3 vào hpt \(\hept{\begin{cases}x+y=1\\3x+2y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\3x+2-2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
Vậy m=3 thì hpt có nghiệm duy nhất (x,y)=(1;0)
b)Ta có \(\hept{\begin{cases}x=1-y\\m-my+2y=m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-y\left(1\right)\\\left(2-m\right)y=0\left(2\right)\end{cases}}\)
Để hpt có nghiệm duy nhất \(\Leftrightarrow pt\left(2\right)\ne0\Leftrightarrow2-m\ne0\Leftrightarrow m\ne2\)
Khi đó \(\left(2\right)\Leftrightarrow y=0\).Thay vào \(\left(1\right)\Leftrightarrow x=1\)
Để hpt có vô số nghiệm \(\Leftrightarrow2-m=0\Leftrightarrow m=2\)
Vậy m\(\ne\)2 thì hpt có nghiệm duy nhất (x;y)=(1;0)
m=2 thì hpt có vô số nghiệm
cho hệ pt \(\left\{{}\begin{matrix}mx+y=1\\x+my=m+1\end{matrix}\right.\)
với giá trị nào của m thì hệ hệ pt có nghiệm duy nhất ,có vô số nghiệm ,vô nghiệm
\(\left\{{}\begin{matrix}m^2x+my=m\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=-1\\x+my=m+1\end{matrix}\right.\)
- Với \(m=\pm1\Rightarrow0.x=-1\) hệ vô nghiệm
- Không tồn tại m để hệ có vô số nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất
2:Khi nào hệ pt có nghiệm duy nhất?Vô nghiệm?Vô số nghiệm?
(mỗi trường hợp cho 1 VD)
3:Lấy 3 vd về hàm số bậc nhất?Lấy 3 vd về hàm số bậc 2?
4:Viết công thức nghiệm giải pt bậc 2
5:Nếu các bước giải bài toán = cách lập pt hoặc hệ pt
6:Phát biểu định lý Vi-ét và cách nhẩm nghiệm
7:Nêu định nghĩa,tính chất,dấu hiệu nhận biết về tứ giác nội tiếp
8:Nêu cách chứng minh đẳng thức tích
9:Nêu cách chứng minh tứ giác nội tiếp
9:Chứng minh cho bốn đỉnh của tứ giác cách đều một điểm nào đó
Chứng minh tứ giác có tổng 2 góc đối bằng 180°
Chứng minh từ hai đỉnh cùng kề một cạnh cùng nhìn một cạnh dưới hai góc bằng nhau. Nếu một tứ giác có tổng số đo hai góc đối bằng thì tứ giác đó nội tiếp được trong một đường tròn.
7:dấu hiệu :Tứ giác có tổng hai góc đối bằng 180∘ . - Tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối với đỉnh đó. - Tứ giác có bốn đỉnh cách đều một điểm (mà có thể xác định được). Điểm đó là tâm đường tròn ngoại tiếp tứ giác.
định nghĩa: Trong Hình học phẳng, một tứ giác nội tiếp là một tứ giác mà cả bốn đỉnh đều nằm trên một đường tròn. Đường tròn này được gọi là đường tròn ngoại tiếp, và các đỉnh của tứ giác được gọi là đồng viên. Tâm và bán kính đường tròn lần lượt được gọi là tâm đường tròn ngoại tiếp và bán kính đường tròn ngoại tiếp.
tính chất: Trong tứ giác nội tiếp, cặp hai tam giác đối nhau qua giao hai đường chéo đồng dạng với nhau. trong đó E và F lần lượt là giao điểm hai cặp cạnh đối của tứ giác. Với một bộ bốn cạnh là bốn cạnh một tứ giác nội tiếp, có thể thay đổi thứ tự các cạnh theo một trật tự bất kỳ
6: viet thuận:
Cho phương trình bậc 2 một ẩn: ax2+bx+c=0 (a≠0) (*) có 2 nghiệm x1 và x2. Khi đó 2 nghiệm này thỏa mãn hệ thức sau:
Hệ quả: Dựa vào hệ thức Viet khi phương trình bậc 2 một ẩn có nghiệm, ta có thể nhẩm trực tiếp nghiệm của phương trình trong một số trường hợp đặc biệt:
Nếu a+b+c=0 thì (*) có 1 nghiệm x1=1 và x2=c/aNếu a-b+c=0 thì (*) có nghiệm x1=-1 và x2=-c/aviet đảoGiả sử hai số thực x1 và x2 thỏa mãn hệ thức:
phép nhẩm: “Phân tích hệ số thành tích và thành tổng”. Trong hai phép nhẩm đó, bạn nên nhẩm hệ số trước rồi kết hợp với để tìm ra hai số thỏa mãn tích bằng và tổng bằng .
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)