Cho hình chóp đều SABCD,AB=a SA=2a AC∩ BD=O. M,N,P là trung điểm của BC,CD và SA. Xác định d(A;(SBD)) Xác dịnh d(D;(SCD)) Xâc định d(O;(SMN)) Xác định d(O;(SAN))
Cho hình chóp SABCD có đáy là hình thang vuông tại A, AB=BC=a; AD= 2a; SA vuông với đáy; SA = a. M,N lần lượt là trung điểm của SB, CD. Tính:
a, (SC, đáy)
b, (SB, SAC)
c, (SD, SAB)
d, (SN, SAC)
e, (SA, SCD)
f, (SA, SBC)
h, (MN, SCA) (xác định góc)
a: \(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)
(SC;(ABCD))=(CS;CA)=góc SCA
tan SCA=SA/AC=1/căn 2
=>góc SCA=35 độ
b:
Kẻ BH vuông góc AC tại H
(SB;SAC)=(SB;SH)=góc BSH
\(HB=\dfrac{a\cdot a}{a\sqrt{2}}=a\cdot\dfrac{\sqrt{2}}{2}\)
AH=AC/2=a*căn 2/2
=>\(SH=\sqrt{a^2+\dfrac{1}{2}a^2}=a\sqrt{\dfrac{3}{2}}\)
\(SH=\dfrac{a\sqrt{6}}{2};HB=\dfrac{a\sqrt{2}}{2};SB=a\sqrt{2}\)
\(cosBSH=\dfrac{SB^2+SH^2-BH^2}{2\cdot SB\cdot SH}=\dfrac{\sqrt{3}}{2}\)
=>góc BSH=30 độ
c: (SD;(SAB))=(SD;SA)=góc ASD
tan ASD=AD/AS=2
nên góc ASD=63 độ
cho hình chóp SABCD đáy ABCD là hình chữ nhật AB= a ,AD=2a,SA=SB=SC=SD=2a gọi O là giao điểm của AC và BD
a chứng minh mặt phẳng SAC vuông góc với mặt phẳng ABCD
b tính khoảng cách từ O->mặt phẳng SCD
c gọi M,N lần lượt là trung điểm của các cạnh SA và BC tính sin góc MN,CSBD
\(SA=SB=AB\Rightarrow\Delta SAB\) đều
Do SA=SB=SC=SD \(\Rightarrow SO\perp\left(ABCD\right)\)
\(AB||CD\Rightarrow\left(SA;CD\right)=\left(SA;AB\right)=\widehat{SAB}=60^0\)
b.
\(SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\Rightarrow\left(SO;BC\right)=90^0\)
c.
Ta có OM là đường trung bình tam giác SBD \(\Rightarrow OM||SD\)
\(\Rightarrow\left(SD;CM\right)=\left(OM;CM\right)=\widehat{OMC}\)
\(OM=\dfrac{1}{2}SD=a\) ; \(OC=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AB^2+AD^2}=\dfrac{a\sqrt{5}}{2}\)
\(cos\widehat{SBC}=\dfrac{1}{4}\Rightarrow CM=\sqrt{BM^2+BC^2-2BM.BC.cos\widehat{SBC}}=\dfrac{a\sqrt{6}}{2}\)
\(cos\widehat{OMC}=\dfrac{OM^2+CM^2-OC^2}{2OM.CM}=\dfrac{5\sqrt{6}}{24}\)
\(\Rightarrow\widehat{OMC}\simeq59^0\)
Cho hình chóp S ABCD . có đáy ABCD là hình vuông tâm O , cạnh bằng, 2a . SA vuông góc với mặt đáy và SA =a .
a) Chứng minh: BD vg (SAC) .
b) Gọi N là trung điểm của CD . Xác định và tính góc giữa đường thẳng SN với mặt phẳng (SBD).
Có : AC vuông góc với BD (hình vuông ABCD)
SA vuông góc với BD ( do SA vuông góc với mp ABCD)
=> BD vuông góc với mp SAC...
Đề bài sai òi :v Vẽ hình ra đi bạn.
Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)
cho hình chóp SABCD đáy là hình thang có 2 góc vuông A và B . AB=BC=a; CD=2a . SA vuông góc với đấy SA=a/ tính Thể tích khối SABCD và khoảng cách từ D đến mặt (SBC)
cho hình chóp SABCD đáy là hình thang có 2 góc vuông A và B . AB=BC=a; CD=2a . SA vuông góc với đấy SA=a/ tính Thể tích khối SABCD và khoảng cách từ D đến mặt (SBC)
kẻ CH_|_AD. AD=AH+HD= BC+căn ( CD^2- CH^2). Thay số.
V=1/3. SA. S abcd
Sabcd=1/2.( BC+ AD).AB
d( D; ( SBC))=d( A;(SBC))=AK
kẻ AK _|_ SB
Cho hình chóp SABCD có đáy là hình thang vuông tại A, B, AD= a, AB=2a, BC=3a,SA=2a . H là trung điểm cạnh AB,SH là đường cao của hình chóp SABCD Tính khoảng cách từ điểm Ađến mp (SCD)
A. a 30 7
B. a 30 7
C. a 13 10
D. a 13 7
Đáp án B
Gọi H 1 là chân đường cao kẻ từ H đến DC. H 2 là chân đường cao kẻ từ H đến S H 1 . Khi đó ta có
H H 1 = a 2 , S H = a 3 ⇒ 1 H H 2 = 1 H H 1 2 + 1 S H 2 = 1 3 a 2 + 1 2 a 2 = 5 6 a ⇒ H H 2 = 6 5 a
⇒ d A , S C D = 30 10 a
Chọn phương án B.
Cho hình chóp SABCD có đáy là hình vuông, SA vuông góc với đáy, SA=a. Góc giữa SD và (SAC) bằng 30o. Tính thể tích khối chóp SABCD và khoảng cách từ điểm D đến mặt phẳng (SBM), (M là trung điểm CD)