cho x,ylà 2 số khác nhau thỏa mãn,x+y=y^2+x.Tính (x^2+y^2+xy)/(xy-1)
Cho x,y là hai số khác nhau thỏa mãn : x2+y=y2+x
Tính giá trị biểu thức P=(x2+y2+xy)/(xy-1)
từ x2+y=y2+x => (x-y)(x+y-1)=0
vì x khác y => x+y-1 = 0 <=> x+y = 1 <=> x2+y2= 1-2xy
thay vào p ta có P= -1
Cho x,y là 2 số khác nhau thỏa mãn x2+y=y2+x tinh gtbt sau
A=\(\frac{x^2+y^2+xy}{xy-1}\)
\(x^2+y=y^2+x\Leftrightarrow\left(x^2-y^2\right)-\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=1\end{cases}}\)
Vì x,y là hai số khác nhau nên loại trường hợp x = y. Vậy x + y = 1 => y = 1 - x
thay vào A : \(A=\frac{x^2+\left(1-x\right)^2+x\left(1-x\right)}{x\left(1-x\right)-1}=\frac{x^2-x+1}{-x^2+x-1}=-1\)
Cho các số thục x,y thỏa mãn x khác y , x khác 0, y khác 0.Chung minh rằng:1/(x-y)^2+1/x^2+1/y^2 => 4/xy
Cho hai số thực x,y khác 0 thay đổi và thỏa mãn đk \(\left(x+y\right)xy=x^2+y^2-xy\). GTLN của bthuc \(M=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho biểu thức: P = 2/x - (x^2/x^2+xy + y^2-x^2/xy - y^2/xy+y^2).x+y/x^2+xy+y^2 với x khác 0, y khác 0, x khác -y
1) Rút gọn biểu thức P.
2) Tính giá trị của biểu thức P, biết x, y thỏa mãn đẳng thức:
x^2+y^2+10=2(x-3y)
cho x, y là 2 số nguyên dương khác nhau thỏa mãn đẳng thức xy=3(x+y)-5. Giá trị của x+y là
cho x,y laf 2 số khacs nhau thỏa mãn x^2+y=y^2+x tinh gtbt sau
A=\(\frac{x^2+y^2+xy}{xy-1}\)
Cho x,y,z là các số khác 0 và đôi một khác nhau thỏa mãn 1/x +1/y + 1/z =0
Tính giá trị biểu thức A=yz/(x^2 +2yz) + xz/(y^2+ 2xz) + xy/(z^2+ 2xy)