(d) y=(m-3)x+m-2
tìm m để khoảng cách từ I(-1;0) đến (d) là lớn nhất
Cho đường thẳng (d) y=x+m-1 . Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) \(3\sqrt{2}\)
y=x+m-1
=>x-y+m-1=0
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+m-1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|m-1\right|}{\sqrt{2}}\)
Để \(d\left(O;\left(d\right)\right)=3\sqrt{2}\) thì \(\dfrac{\left|m-1\right|}{\sqrt{2}}=3\sqrt{2}\)
=>|m-1|=6
=>\(\left[{}\begin{matrix}m-1=6\\m-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-5\end{matrix}\right.\)
Với \(m=-1\) thì d qua O nên k/c bằng 0 (loại), với \(m=2\) thì đường thẳng (d) có dạng \(y=3\) nên k/c từ O đến (d) bằng 3 (loại)
Với \(m\ne\left\{-1;2\right\}\)
Gọi A và B lần lượt là giao điểm của (d) với Ox và Oy
\(\Rightarrow x_A=-\dfrac{m+1}{m-2}\) ; \(y_B=m+1\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|x_A\right|=\left|\dfrac{m+1}{m-2}\right|\\OB=\left|y_B\right|=\left|m+1\right|\end{matrix}\right.\)
Gọi H là chân đường cao hạ từ O xuống d \(\Rightarrow OH\) là đường cao trong tam giác vuông OAB (vuông tại O) đồng thời \(OH=1\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\Leftrightarrow1=\left(\dfrac{m-2}{m+1}\right)^2+\dfrac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(m+1\right)^2=\left(m-2\right)^2+1\)
\(\Leftrightarrow6m=4\)
\(\Rightarrow m=\dfrac{2}{3}\)
Tìm tất cả giá trị của m để khoảng cách từ gốc tọa độ đến (d):y=(m-2)x + 3 bằng 1
\(d\left(O;d\right)=\dfrac{\left|\left(m-2\right)\cdot0+\left(-1\right)\cdot0+3\right|}{\sqrt{\left(m-2\right)^2+1}}=\dfrac{3}{\sqrt{\left(m-2\right)^2+1}}\)
Để d=1 thì \(\sqrt{\left(m-2\right)^2+1}=3\)
=>(m-2)^2+1=9
=>(m-2)^2=8
=>\(m=\pm2\sqrt{2}+2\)
cho hàm số bậc nhất y=(2m-1)x+m-1(d)
a) tìm m để (d) cắt 2 trục tạo thành tam giác vuông cân
b) tìm m để khoảng cách từ 0 đến d là \(\sqrt{3}\)
cho hàm số y=(m-2)x+5(m khác 2) có đồ thị là đường thẳng d
a. tìm m để d đi qua điểm A(2;-1)
B. Tìm m để khoảng cách từ gốc O đến đường thẳng d bằng 3
a: Thay x=2 và y=-1 vào (d), ta được:
2(m-2)+5=-1
=>2(m-2)=-6
=>m-2=-3
=>m=-1
b: (d): y=(m-2)x+5
=>(m-2)x-y-5=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m-2\right)+0\left(-1\right)-5\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{5}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d))=3 thì \(\dfrac{5}{\sqrt{\left(m-2\right)^2+1}}=3\)
=>\(\sqrt{\left(m-2\right)^2+1}=\dfrac{5}{3}\)
=>\(\left(m-2\right)^2+1=\dfrac{25}{9}\)
=>\(\left(m-2\right)^2=\dfrac{16}{9}\)
=>\(\left[{}\begin{matrix}m-2=\dfrac{4}{3}\\m-2=-\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{10}{3}\\m=\dfrac{2}{3}\end{matrix}\right.\)
Cho hàm số bậc nhất y = (m - 2)x + m + 1 với m là tham số
1. Tìm m để (d) đi qua điểm A(1; -1). Vẽ (d) với m vừa tìm được.
2. Với giá trị nào của m thì (d) và đường thẳng (d’) : y = 1 - 3x song song với nhau?
3. Tìm m để khoảng cách từ O đến (d) = 1
1: Thay x=1 và y=-1 vào (d), ta được:
\(1\left(m-2\right)+m+1=-1\)
=>2m-1=-1
=>m=0
Khi m=0 thì (d): \(y=\left(0-2\right)x+0+1=-2x+1\)
2: Để (d)//(d') thì \(\left\{{}\begin{matrix}m-2=-3\\m+1< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m< >0\end{matrix}\right.\)
=>m=-1
3:
(d): y=(m-2)x+m+1
=>(m-2)x-y+m+1=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m+1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}=1\)
=>\(\sqrt{\left(m-2\right)^2+1}=\sqrt{\left(m+1\right)^2}\)
=>\(\left(m-2\right)^2+1=\left(m+1\right)^2\)
=>\(m^2-4m+4+1=m^2+2m+1\)
=>-4m+5=2m+1
=>-6m=-4
=>m=2/3(nhận)
cho đường thẳng y=(m-2) x+2 (d) a, CMR: đường thẳng (d) luôn đi qua 1 điểm cố định với mọi m b,tìm già trị của m để khoảng cách từ gốc tọa độ đến đương thẳng (d) =1 c, tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng m là lớn nhất
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
Cho (d):`y=(m^2 +3)x+4`
Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) lớn nhất.
(d): \(y=\left(m^2+3\right)x+4\)
=>\(\left(m^2+3\right)x-y+4=0\)
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m^2+3\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m^2+3\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{4}{\sqrt{\left(m^2+3\right)^2+1}}\)
\(m^2+3>=3\forall m\)
=>\(\left(m^2+3\right)^2>=9\forall m\)
=>\(\left(m^2+3\right)^2+1>=10\forall m\)
=>\(\sqrt{\left(m^2+3\right)^2+1}>=\sqrt{10}\forall m\)
=>\(\dfrac{4}{\sqrt{\left(m^2+3\right)^2+1}}< =\dfrac{4}{\sqrt{10}}\forall m\)
=>\(d\left(O;\left(d\right)\right)< =\dfrac{4}{\sqrt{10}}\forall m\)
Vậy: Khoảng cách từ O(0;0) đến (d) lớn nhất bằng \(\dfrac{4}{\sqrt{10}}=\dfrac{4\sqrt{10}}{10}=\dfrac{2\sqrt{10}}{5}\) khi m=0
Cho hai đường thẳng (d):y=2x-2 và (d’) :y=(m+1) x+6 (m≠-1)
a)Vẽ đồ thị hàm số (d):y=2X-2
B)Tìm m để đồ thị hai hàm số (d)và (d’) có thị song song với nhau
c)Tìm m để khoảng cách từ gốc tọa độ o đến đường thẳng (d’) bằng 3√2
a: 
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}m+1=2\\6< >-2\left(đúng\right)\end{matrix}\right.\)
=>m+1=2
=>m=1
c:
(d'): y=(m+1)x+6
=>(m+1)x-y+6=0
Khoảng cách từ O đến (d') là:
\(d\left(O;\left(d'\right)\right)=\dfrac{\left|0\cdot\left(m+1\right)+0\cdot\left(-1\right)+6\right|}{\sqrt{\left(m+1\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}\)
Để \(d\left(O;\left(d'\right)\right)=3\sqrt{2}\) thì \(\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}=3\sqrt{2}\)
=>\(\sqrt{\left(m+1\right)^2+1}=\sqrt{2}\)
=>\(\left(m+1\right)^2+1=2\)
=>\(\left(m+1\right)^2=1\)
=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)