Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đức Anh
Xem chi tiết
Bui Huyen
14 tháng 3 2019 lúc 21:38

ta có \(a^2,b^2,c^2\ge0\)

mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)

Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai 

còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik 

Lê Đức Anh
14 tháng 3 2019 lúc 21:45

Thank you

Lê Nhật Khôi
14 tháng 3 2019 lúc 22:10

Ta có:

\(a+b+c=6\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=36\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=36\)

\(\Leftrightarrow ab+bc+ac=18\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=324\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+2abc\left(a+b+c\right)=324\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2=324\)

Có: \(a^2+b^2+c^2=0\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=0\)

\(\Leftrightarrow a^4+b^4+c^4+2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\right]=0\)

\(\Leftrightarrow P=a^4+b^4+c^4=-648\)

Như thế có thể kết luận đề sai 

Do tất cả đề lớn hơn bằng 0

Mình trình bày cách giải ra đề lần sau đề đúng để bn có hướng làm 

Đỗ Thị Vân Nga
Xem chi tiết
nhoc quay pha
13 tháng 11 2016 lúc 16:53

Đặt A=a4+b4+c4

ta có:

a+b+c=0

=>(a+b+c)2=0

=> a2+b2+c2+2ab+2bc+2ca=0

=> (a2+b2+c2)+2(ab+bc+ca)=0

=>2+2(ab+bc+ca)=0

=>2(ab+bc+ca)=-2

=> ab+bc+ca=-1

Ta có:

ab+bc+ca=-1

=> (ab+bc+ca)2=1

=>a2b2+b2c2+c2a2+2ab2c+2bc2a+2ca2b=1

=>(a2b2+b2c2+c2a2) + 2abc(b+c+a)=1

=>(a2b2+b2c2+c2a2) =1

Ta có:

A=a4+b4+c4

A=(a4+b4+c4+2a2b2+2b2c2+2c2a2) - (2a2b2+2b2c2+2c2a2)

A=(a2+b2+c2)2 - 2(a2b2+b2c2+c2a2)

A= 22- 2.1

A=4-2=2

Vậy a4+b4+c4=2

Mỹ Ngọc Trần
Xem chi tiết
fan FA
1 tháng 8 2016 lúc 17:12

a+b+c = 0 
<=> (a+b+c)^2 = 0 
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0 
<=>14 + 2(ab + ac + bc) = 0 
<=> 2(ab + ac + bc) = -14 
<=> ab + ac + bc = -7 
=> (ab + ac + bc)^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49 

Ta có: a^2 + b^2 + c^2 = 14 
=> (a^2 + b^2 + c^2)^2 = 14^2 
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196 
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196 
<=> a^4 + b^4 + c^4 + 2 . 49 = 196 
<=> a^4 + b^4 + c^4 + 98 = 196 
<=> a^4 + b^4 + c^4 = 98 

Nguyễn Quỳnh Chi
1 tháng 8 2016 lúc 17:13

a+b+c=0 nha bạn!

Mahoustakai Precure
4 tháng 7 2017 lúc 13:33

a+b+c=0

k mk nhe !

Trương Nguyễn Anh Kiệt
Xem chi tiết
zZz Cool Kid_new zZz
7 tháng 7 2019 lúc 20:36

Anh tham khao tai day:

Câu hỏi của chu ngọc trâm anh - Toán lớp 8 - Học toán với OnlineMath

Tham khảo tại : 

Cho a+b+c=0 và a^2+b^2+c^2=1. Tính a^4+b^4+c^4? Cảm ơn ạ! | Cộng đồng học sinh Việt Nam - HOCMAI Forum

Câu hỏi của Shingeki_Ogaeshi_Senki - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của Anh Quốc - Toán lớp 8 - Học toán với OnlineMath

_Tử yên_

Võ Trung Kiên
Xem chi tiết
Đỗ Thanh Tùng
4 tháng 7 2016 lúc 22:26

Ta có 

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0^2\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Mà \(a^2+b^2+c^2=14\)

\(\Rightarrow14+2\left(ab+bc+ca\right)=0\Rightarrow2\left(ab+bc+ca\right)=-14\Rightarrow ab+bc+ca=-7\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-7\right)^2\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)

Mà \(a+b+c=0\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=49\)(1)

Ta lại có 

\(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=\left(14\right)^2\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)

\(\Rightarrow a^4+b^4+c^4=196-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(2)

Thay (1) vào (2) 

\(a^4+b^4+c^4=196-2.49=98\)

nha - Cảm ơn 

CHÚC BẠN HỌC TỐT

chi lê
Xem chi tiết
Nguyễn Trần Thiên Lý
2 tháng 9 2016 lúc 21:47
A = 2032128
phạm đức lâm
15 tháng 5 2018 lúc 15:35

A = 2032128

Bùi Vương TP (Hacker Nin...
14 tháng 3 2019 lúc 21:30

(a+b+c)2=a2+b2+c2+2ac+2bc+2ab

=>02=1+2(ac+bc+ab)

=>ac+bc+ab=-1/2

=>(ac+bc+ab)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab

(ac+bc+ab)2=a2b2+b2c2+a2c2+2abc(a+b+c)

=>(-1/2)2=a2b2+b2c2+a2c2+2abc.0

=>a2b2+b2c2+a2c2=1/4

(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2

(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)

12=a4+b4+c4+2.1/4

1=a4+b4+c4.1/2

a4+b4+c4=1-1/2=1/2

Bui Thi Thu Phuong
Xem chi tiết
Nguyễn Lương Hà
19 tháng 7 2016 lúc 18:47

Bình phương 2 vế a+b+c=0, tính được ab+bc+ca=-1/2.

Bình phương 2 vế ab+bc+ca=-1/2, tính được (ab)2+(bc)2+(ca)2=1/4

Bình phương 2 vế a2+b2+c2=1, ta có:

                  a4+b4+c4+2[(ab)2+(bc)2+(ac)2]=1

           <=> a4+b4+c4+1/2=1

           <=> M=1/2

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 2 2021 lúc 12:59

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)

hay \(ab+bc+ac=-\dfrac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)

Ta có: \(M=a^4+b^4+c^4\)

\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)

\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)

\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Vậy: \(M=\dfrac{1}{2}\)

Nguyễn Ngọc Lộc
9 tháng 2 2021 lúc 12:57

Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )

\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)

Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )

\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)

Vậy ...

Tô Quang Hưng
Xem chi tiết