Đặt A=a4+b4+c4
ta có:
a+b+c=0
=>(a+b+c)2=0
=> a2+b2+c2+2ab+2bc+2ca=0
=> (a2+b2+c2)+2(ab+bc+ca)=0
=>2+2(ab+bc+ca)=0
=>2(ab+bc+ca)=-2
=> ab+bc+ca=-1
Ta có:
ab+bc+ca=-1
=> (ab+bc+ca)2=1
=>a2b2+b2c2+c2a2+2ab2c+2bc2a+2ca2b=1
=>(a2b2+b2c2+c2a2) + 2abc(b+c+a)=1
=>(a2b2+b2c2+c2a2) =1
Ta có:
A=a4+b4+c4
A=(a4+b4+c4+2a2b2+2b2c2+2c2a2) - (2a2b2+2b2c2+2c2a2)
A=(a2+b2+c2)2 - 2(a2b2+b2c2+c2a2)
A= 22- 2.1
A=4-2=2
Vậy a4+b4+c4=2