1) \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
2) \(\sqrt{x+2\sqrt{x-1}}=2\)
Giải các phương trình:
a) \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
b) \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
c) \(\sqrt{x^2-5x+6}=\sqrt{x-2}\)
d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
a. ĐKXĐ: $x\geq 2$ hoặc $x=1$
PT $\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}$
$\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)
b.
PT $\Leftrightarrow \sqrt{(x-2)^2}=\sqrt{(2x-3)^2}$
$\Leftrightarrow |x-2|=|2x-3|$
\(\Leftrightarrow \left[\begin{matrix} x-2=2x-3\\ x-2=3-2x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\)
c. ĐKXĐ: $x=2$ hoặc $x\geq 3$
PT $\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x-3}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x-3}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=4\end{matrix}\right.\) (đều tm)
d.
PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$
$\Leftrightarrow |2x-1|=|x-3|$
\(\Leftrightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)
a: Ta có: \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
\(\Leftrightarrow x^2-3x+2=x-1\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x-2\\2x-3=-x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)
c: Ta có: \(\sqrt{x^2-5x+6}=\sqrt{x-2}\)
\(\Leftrightarrow x^2-5x+6=x-2\)
\(\Leftrightarrow x^2-6x+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Gidipt 1) sqrt(x ^ 2 - x) = sqrt(3 - x)
2) sqrt(x ^ 2 - 4x + 3) = x - 2
3) sqrt(4 * (1 - x) ^ 2) - 6 = 0
4) sqrt(x ^ 2 - 4x + 4) = sqrt(4x ^ 2 - 12x + 9)
5) sqrt(x ^ 2 - 4) + sqrt(x ^ 2 + 4x + 4) = 0
6) 1sqrt(x + 2sqrt(x - 1)) + sqrt(x - 2sqrt(x - 1)) = 2
1: =>x^2-x=3-x
=>x^2=3
=>x=căn 3 hoặc x=-căn 3
2: =>x^2-4x+3=x^2-4x+4 và x>=2
=>3=4(vô lý)
3: =>2|x-1|=6
=>|x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2 hoặc x=4
4: =>|2x-3|=|x-2|
=>2x-3=x-2 hoặc 2x-3=-x+2
=>x=1 hoặc x=5/3
5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
=>x+2=0
=>x=-2
2) giải pt
3) \(\sqrt{4x+1}=x+1\)
4) \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)
5) \(\sqrt{4x^2-12x+9}=7\)
6) \(5\sqrt{9x-9}-\sqrt{4x-4}-\sqrt{x-1}=36\)
giúp mk vs ah
3: Ta có: \(\sqrt{4x+1}=x+1\)
\(\Leftrightarrow x^2+2x+1=4x+1\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)
\(\Leftrightarrow3\sqrt{x-1}=15\)
\(\Leftrightarrow x-1=25\)
hay x=26
5: Ta có: \(\sqrt{4x^2-12x+9}=7\)
\(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a) \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
b) \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
a
ĐK: \(x\ge1\left(\sqrt{x-1}\ge0\right)\)
\(PT\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\\ \Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\\ \Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\\ \Leftrightarrow\left(\sqrt{x-1}\right)\left(\sqrt{x-2}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x-2}=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)
b
ĐK: \(\left\{{}\begin{matrix}x^2-4x+4>0\\4x^2-4x+9>0\end{matrix}\right.\)
PT \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(2x-3\right)^2}\)
\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2x-3\\x-2=3-2x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
giải các phương trình
a/\(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
b/\(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
c/\(\sqrt{x^2-5x+6}=\sqrt{x-2}\)
d/\(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
a)...ghi lại đề...
\(\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-2}=\frac{\sqrt{x-1}}{\sqrt{x-1}}=1\)
\(\Leftrightarrow\sqrt{x-2}^2=1^2\)
\(\Leftrightarrow x-2=1\)(Vì \(x-2\ge0\Leftrightarrow x\ge2\))
\(\Leftrightarrow x=3\)
\(\)
\(a,\sqrt{x^2-3x+2}=\sqrt{x-1}\)
\(\Rightarrow x^2-3x+2=x-1\)
\(\Rightarrow x^2-4x+3=0\)
\(\Rightarrow x^2-x-3x+3=0\)
\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy..........
b)...ghi lại đề...
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(2x-3\right)^2}\)
\(\Leftrightarrow|x-2|=|2x-3|\)
\(\Leftrightarrow x-2\)(vì \(x-2\ge0\Leftrightarrow x\ge2\))\(=2x-3\)(vì \(2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\))
\(\Leftrightarrow x-2x=2-3\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
giải các phương trình
a/\(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
b/\(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
c/\(\sqrt{x^2-5x+6}=\sqrt{x-2}\)
d/\(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
a)
ĐK: $x\geq 2$
PT \(\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}\)
\(\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1(\text{loại vì x}\geq 2)\\ \sqrt{x-2}=1\end{matrix}\right.\)
\(\Rightarrow x=1^2+2=3\) là nghiệm duy nhất thỏa mãn
b)
ĐK: $x\in\mathbb{R}$
Bình phương 2 vế:
\(\Rightarrow x^2-4x+4=4x^2-12x+9\)
\(\Leftrightarrow (x-2)^2=(2x-3)^2\)
\(\Leftrightarrow (x-2)^2-(2x-3)^2=0\Leftrightarrow (x-2-2x+3)(x-2+2x-3)=0\)
\(\Leftrightarrow (-x+1)(3x-5)=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\) (đều thỏa mãn)
Vậy..........
c)
ĐKXĐ: $x\geq 3$
PT \(\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}\)
\(\Leftrightarrow (x-2)(x-3)=x-2\) (bình phương 2 vế không âm)
\(\Leftrightarrow (x-2)(x-3-1)=0\)
\(\Rightarrow \left[\begin{matrix} x-2=0\\ x-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2(\text{loại vì x}\geq 3)\\ x=4\end{matrix}\right.\)
Vậy $x=4$
d)
ĐK: $x\in\mathbb{R}$
PT \(\Leftrightarrow 4x^2-4x+1=x^2-6x+9\) (bình phương 2 vế không âm)
\(\Leftrightarrow (2x-1)^2=(x-3)^2\Leftrightarrow (2x-1)^2-(x-3)^2=0\)
\(\Leftrightarrow (2x-1-x+3)(2x-1+x-3)=0\)
\(\Leftrightarrow (x+2)(3x-4)=0\Rightarrow \left[\begin{matrix} x+2=0\\ 3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\) (đều thỏa mãn)
Vậy.........
bài 1 : giải phương trình:
a. \(\sqrt{x+2\sqrt{ }x-1}=2\)
b. \(\sqrt{x^2-4x+4}=\sqrt{4x^212x+9}\)
c.\(\sqrt{x+4\sqrt{ }x-4}=2\)
d. \(\sqrt{x^2-6x+9}=2\)
e. \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
f. \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)
e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)
c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)
\(\Leftrightarrow x-4=0\)
hay x=4
a) \(\sqrt{x-1+2\sqrt{x-1}.1+1^2}=2;đk:x\)≥1
⇔\(\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}.1+1^2}=2\left(hđt-1\right)\)
⇔\(\sqrt{\left(\sqrt{x-1}+1\right)^2=2}\)
⇔|\(\sqrt{x-1}+1\)|=2
⇔\(\left[{}\begin{matrix}\sqrt{x+1}-1=2\\\sqrt{x+1-1}=-2\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}\sqrt{x+1}=3\\\sqrt{x+1}=-1\left(L\right)\end{matrix}\right.\)⇔x+1=9⇔x=10(TM)
→S={10}
câu 1:\(\sqrt{7x^2+20x-86}+x\sqrt{31-4x-x^2}=x+1\)
câu 2:\(\sqrt[3]{\frac{12x^2+12x+9}{4}}=x+\sqrt[4]{\frac{4x^3-2}{3}}\)