Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
O Đì
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2023 lúc 18:19

loading...  loading...  

Ngọc Vĩ
Xem chi tiết
Mr Lazy
11 tháng 7 2015 lúc 21:14

\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)

\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)

A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)

\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.

\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)

(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)

\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}

Trần Minh Đạt
Xem chi tiết
hacker lỏ
Xem chi tiết

6\(x\) + 2m = 2m\(x\) + 2

6\(x\) - 2m\(x\) = 2 - 2m

2\(x\)(3 - m) = 2( 1 -m)

 \(x\)(3-m)    =  1 - m

 \(x\)            = \(\dfrac{1-m}{3-m}\)

3 - m # 0

Pt có nghiệm nguyên dương khi và chỉ khi

1 - m ⋮ 3- m và ( 1-m)(3-m) > 0

3 - m - 2 ⋮ 3 -m

           2 ⋮ 3 - m

3 - m \(\in\) { -2; -1; 1; 2}

     m ∈ { 5; 4; 2;  1}

Với m = 5 => (1-5)(3-5) = 8 > 0( thỏa mãn)

Với m = 4 => ( 1-4)(3-4) = 3 > 0 (thỏa mãn)

Với m = 2 => ( 1-2) (3-2) = -1 < 0 (loại)

Với m = 1 => ( 1-1)(3-1) =0 (loại)

Vậy m \(\in\) {4; 5}

Thảo Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 4 2021 lúc 19:46

a) Thay m=2 vào phương trình, ta được:

\(2^2+4\cdot3-3=2^2+x\)

\(\Leftrightarrow x+4=4+12-3\)

\(\Leftrightarrow x+4=13\)

hay x=9

Vậy: Khi m=2 thì x=9

Akai Haruma
4 tháng 4 2021 lúc 3:02

Lời giải:

Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$

a) Với $m=2$ thì $x=4.2-3=5$

Vậy $x=5$

b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$

c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$

 

Tho Nguyễn Văn
Xem chi tiết
Nguyễn Văn A
2 tháng 4 2023 lúc 10:58

\(x^2-2mx+2m-3=0\left(1\right)\)

Để phương trình (1) có nghiệm thì:

\(\Delta\ge0\Rightarrow\left(-2m\right)^2-4\left(2m-3\right)\ge0\)

\(\Leftrightarrow4m^2-8m+12\ge0\)

\(\Leftrightarrow\left(2m-2\right)^2+8\ge0\) (luôn đúng)

Vậy \(\forall m\) thì phương trình (1) có nghiệm.

Theo định lí Viete ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-3\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-x_1x_2=3\)

\(\Rightarrow\left(x_1x_2-x_1-x_2+1\right)+2=0\)

\(\Rightarrow\left(x_1-1\right)\left(x_2-2\right)=-2\)

Vì x1, x2 là các số nguyên nên x1-1 , x2-1 là các ước số của -2. Lập bảng:

x1-11-12-2
x2-1-22-11
x1203-1
x2-1302

Với \(\left(x_1;x_2\right)=\left(3;0\right),\left(0;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}2m=0+3=3\\2m-3=0.3=0\end{matrix}\right.\Rightarrow m=\dfrac{3}{2}\)

Với \(\left(x_1;x_2\right)=\left(2;-1\right),\left(-1;2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2m=2-1=1\\2m-3=2.\left(-1\right)=-2\end{matrix}\right.\Rightarrow m=\dfrac{1}{2}\)

Vậy m=1/2 hay m=3/2 thì pt trên có 2 nghiệm là các số nguyên.

 

Lizy
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 lúc 21:53

- Với \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)

- Với \(m\ne\dfrac{5}{2}\) ta có:

\(a+b+c=2m-5-2\left(m-1\right)+3=0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2m-5}\end{matrix}\right.\)

Do 1 là số nguyên dương nên để pt có 2 nghiệm pb đều nguyên dương thì:

\(\left\{{}\begin{matrix}\dfrac{3}{2m-5}\ne1\\\dfrac{3}{2m-5}\in Z^+\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne4\\2m-5=Ư\left(3\right)=\left\{1;3\right\}\end{matrix}\right.\) (do nghiệm nguyên dương và 3 dương nên ta chỉ cần xét các ước dương của 3)

\(\Rightarrow\left\{{}\begin{matrix}m\ne4\\m=\left\{3;4\right\}\end{matrix}\right.\) 

\(\Rightarrow m=3\)

Nguyễn Việt Lâm
16 tháng 1 lúc 21:05

Đề là "hai nghiệm dương" hay "hai nghiệm nguyên dương" vậy em?

Nguyễn Hoàng Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2021 lúc 20:13

Bài 1: 

a) Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot m\cdot\left(m+2\right)\)

\(\Leftrightarrow\Delta=4m^2-4m+1-4m^2-8m\)

\(\Leftrightarrow\Delta=-12m+1\)

Để phương trình có nghiệm kép thì \(\Delta=0\)

\(\Leftrightarrow-12m+1=0\)

\(\Leftrightarrow-12m=-1\)

hay \(m=\dfrac{1}{12}\)

b) Ta có: \(\Delta=\left(4m+3\right)^2-4\cdot2\cdot\left(2m^2-1\right)\)

\(\Leftrightarrow\Delta=16m^2+24m+9-16m^2+8\)

\(\Leftrightarrow\Delta=24m+17\)

Để phương trình có nghiệm kép thì \(\Delta=0\)

\(\Leftrightarrow24m+17=0\)

\(\Leftrightarrow24m=-17\)

hay \(m=-\dfrac{17}{24}\)

Mymy V
Xem chi tiết
Nguyễn Tuấn Anh
21 tháng 2 2023 lúc 13:44

2x^2  -(4m+3)x+2m^2-1=0

 

 a= 2

b = -(4m+3)

 c= 2m^2-1

Ta có: ∆=b^2-4ac

              = 〖(4m+3)〗^2-4.2.(2m^2-1)

              = 16m^2+24m+9-16m^2+8   

               = 24m +17

Để phương trình có 2 nghiệm phân biệt

=> ∆> 0 =>24m +17>0=> 24m > - 17=>m> (-17)/24

Vậy để pt có 2 nghiệm phân biệt thì m > (-17)/24

https://www.youtube.com/watch?v=toNMfaR7_Ns

 

 

Nguyễn Tuấn Anh
21 tháng 2 2023 lúc 13:47

Nguyễn Tuấn Anh
21 tháng 2 2023 lúc 13:48

https://www.youtube.com/watch?v=toNMfaR7_Ns