Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thị Thùy Trang
Xem chi tiết
Nguyễn Linh Chi
12 tháng 8 2020 lúc 11:26

Với x = y \(\ge\)0=> \(\sqrt{x}=\sqrt{y}\) là số hữu tỉ

Với \(x\ne y>0\)

Đặt \(\sqrt{x}+\sqrt{y}=t\) là số hữu tỉ 

=> \(\frac{x-y}{\sqrt{x}-\sqrt{y}}=t\Rightarrow\sqrt{x}-\sqrt{y}=\frac{x-y}{t}\)  là số hữu tỉ 

=> \(\sqrt{x};\sqrt{y}\) là số hữu tỉ

Khách vãng lai đã xóa
White Boy
Xem chi tiết
alibaba nguyễn
29 tháng 10 2016 lúc 16:33

Ta có \(9x-4y=\left(3\sqrt{x}-2\sqrt{y}\right)\left(3\sqrt{x}+2\sqrt{y}\right)\)là số hữu tỷ

Vì \(\left(3\sqrt{x}-2\sqrt{y}\right)\)(1) là số hữu tỷ nên \(\left(3\sqrt{x}+2\sqrt{y}\right)\)(2) cũng là số hữu tỷ

Lấy (2) - (1) và (2) + (1) ta được

\(\hept{\begin{cases}4\sqrt{y}\\6\sqrt{x}\end{cases}}\)là 2 số hữu tỷ vậy \(\sqrt{x},\sqrt{y}\)là hai số hữu tỷ

Nguyễn Hoàng Minh
Xem chi tiết
nthv_.
10 tháng 10 2021 lúc 10:07

Tham khảo nha ông:

undefined

Giao Khánh Linh
Xem chi tiết
Đào Thu Hòa 2
20 tháng 11 2019 lúc 20:59

Đẳng thức đã cho tương đương với 

\(x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy.\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(xy+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}+\left(\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow x+y-\frac{xy+1}{x+y}=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy+1\)

\(\Leftrightarrow\sqrt{1+xy}=|x+y|\)

Vì x,y là số hữu tỉ nên Vế phải của đẳng thức là số hữu tỉ => Điều phải chứng minh

Khách vãng lai đã xóa
Trang Seet
Xem chi tiết
ITACHY
Xem chi tiết
Akai Haruma
17 tháng 7 2018 lúc 23:39

Lời giải:

Đặt \(\sqrt{x}+\sqrt{y}=a\in\mathbb{Q}\)

\(\Rightarrow \sqrt{x}=a-\sqrt{y}\)

Bình phương 2 vế:
\(x=a^2+y-2a\sqrt{y}\)

\(\Rightarrow 2a\sqrt{y}=a^2+y-x\in\mathbb{Q}\) do \(a,x,y\in\mathbb{Q}\)

Ta thấy \(\left\{\begin{matrix} 2a\sqrt{y}\in\mathbb{Q}\\ 2a\in\mathbb{Q}\end{matrix}\right.\Rightarrow \sqrt{y}\in\mathbb{Q}\)

\(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}\in\mathbb{Q}\\ \sqrt{y}\in\mathbb{Q}\end{matrix}\right.\Rightarrow \sqrt{x}\in\mathbb{Q}\)

Ta có đpcm.

Kiều_My
Xem chi tiết
chàng trai 16
Xem chi tiết
Lê Hiển Vinh
Xem chi tiết